a2 United States Patent

Asveren

US009461931B1

US 9,461,931 B1
Oct. 4, 2016

(10) Patent No.:
45) Date of Patent:

(54)

(71)

(72)

(73)

")

@

(22)

(60)

(1)

(52)

(58)

METHODS AND APPARATUS FOR

PREVENTING HEAD OF LINE BLOCKING

FOR RTP OVER TCP

Applicant: Sonus Networks, Inc., Westford, MA

(US)
Inventor: Tolga Asveren, Bordentown, NJ (US)
Assignee: SONUS NETWORKS, INC.,
Westford, MA (US)
Notice: Subject to any disclaimer, the term of this

patent is extended or adjusted under 35

U.S.C. 154(b) by 169 days.
Appl. No.: 14/265,007
Filed: Apr. 29, 2014

Related U.S. Application Data

Provisional application No. 61/947,244, filed on Mar.

3, 2014
Int. C.

HO4L 12/863 (2013.01)

HO4L 12/801 (2013.01)

U.S. CL.

CPC ... HO4L 47/6205 (2013.01); HO4L 47/34

(2013.01)

Field of Classification Search
None
See application file for complete search history.

(56) References Cited
U.S. PATENT DOCUMENTS

2010/0014530 Al* 1/2010 Cutaiaccooevee HO4L 12/66
370/401
2014/0334502 Al* 11/2014 Gammon HO4L 69/08
370/466

* cited by examiner

Primary Examiner — Huy D Vu
Assistant Examiner — Teisha D Hall

(74) Attorney, Agent, or Firm — Stephen T. Straub;
Ronald P. Straub; Michael P. Straub

(57) ABSTRACT

Methods and apparatus for processing and using TCP pack-
ets to communicate RTP packets are described. Head of line
blocking is avoided by operating a TCP packet processing
module to output RTP packet data to an application irre-
spective of whether or not a preceding TCP packet was
received. Since output of packet data to an application using
RTP packets is not delayed when there is a missing TCP
packet, head of line blocking is avoided. RTP packet data is
subjected to pattern matching in order to identify and
process RTP packets in the case where RTP header infor-
mation such as packet length information is missing due to
the failure to receive a TCP packet. The methods are
particularly well suited for the communication of audio
and/or video by devices operating behind firewalls which
block UDP or other types of packets other than TCP packets.

14 Claims, 18 Drawing Sheets

1822

¢

RECEIVE A SECOND TCP PACKET WHICH 1S 1624
PART OF SAID TCP PACKET SEQUENCE

EXTRACT SECOND DATA FROM 1626
SAID SECOND TCP PACKET

PROVIDE SAID EXTRACTED SECOND DATA AND A CORRESPONDING SECOND TCP
PACKET SEQUENGE NUMBER TO AN RTP APPLICATION IRRESPECTIVE OF WHETHER OR
NOT A PRECEDING TCP PACKET IN SAID PACKET SEQUENCE HAS BEEN RECEIVED

| 1628

!

ADD SAID EXTRACTED SECOND DATA TO A SEQUENCE OF STORED PACKET DATA AT A
LOCATION IN SAID SEQUENCE OF STORED PACKET DATA, SAID LOCATION BEING A
LOCATION DETERMINED BASED ON SAID SECOND TCP PACKET SEQUENCE NUMBER
ASSOCIATED WITH THE EXTRACTED SECOND DATA

| 1630

TCP PACKET SEQUENCE NUMBER
HIGHER THAN THE HIGHEST PREVIOUSLY
RECEIVED TCP PACKET SEQUENCE NUMBER
CORRESPONDING TO SAID TCP PACKET,

1834

INCREMENT THE RECEIVED TCP
SEQUENCE COUNTER TO SET THE
HIGHEST RECEIVED SEQUENCE
NUMBER OF SAID TCP SEQUENCE

SEQUENGE
COUNTER TO SAID CORRESPONDING ?

SECOND TCP PACKET SEQUENCE 1840
N REFRAIN FROM CHANGING THE
NS AN AN GEVERT RECEIVED TCP SEQUENGE COUNTER
INDICATING SUCCESSFUL RECEIPT
OF ATCP PACKET WHEN SAID

REFRAIN FROM SENDING AN 1642
ACKNOWLEDGEMENT TO THE SENDER [*
OF THE RECEIVED SECOND TCP PACKET)

1643

RECEIVED TCP PACKET CAUSES
INCREMENTING OF SAID RECEIVED
TCP SEQUENCE COQUNTER

c

TCP PACKET SEQUENCE NUMBER
LOWER THAN THE HIGHEST PREVIOUSLY
RECEIVED TCP PACKET SEQUENCE NUMBER
CORRESPONDING TO SAID TGP PACKET

1638

US 9,461,931 B1

Sheet 1 of 18

Oct. 4, 2016

U.S. Patent

SLINoYIn __| 30IA3a
ozoL— 0 A18N3SSY 11d.1NO
"9'3 'SIINAON _\Ne\ e ——
40 A19W3SSY | FOV44ILNI _
| oL |
NOILYIWMOAN| 7 _.._éoﬁomf
v1va 6z0L 110}
”~
8201 Qmeo En
S31NCAOW r —
40 AT1aW3SSY 3AIFO3Y TIVAMINIL Omm o3
oo JOVMALNI =SOL I Ny
9201y yowam m e doL 5001
T ZL01”
810l — I JOV4YALNI
10l <
1 0L0L v001
Y0SS300Yd
30IA3A LNdNI
\
9L0p T 900}
zZz0l
301A3A LNINLINDI ¥3SN 93 ‘IDIATA SNOILYIINNWNOD
\
8001

NHOMLAN

(30I1A43S
d1¥ OL ALMVd)
3I0IA3Q

SNOILYOINNWIWOD

/
200l

000}
x_

US 9,461,931 B1

U.S. Patent Oct. 4, 2016 Sheet 2 of 18
200 A
;250 y 252
TCP
STACK APPLICATION
MODULE
' SEND DATA WHEN /204 I 202
2 <
06~ AVAILABLE ¢
7208 | , 210 I
SEQ = 1-100BYTES | |
212+ o2 216
| DATA (SEQ = 1, 100 BYTES)
220
. Z 218
22212 \‘I‘ SEND DATA WHEN AVAILABLE |"
SEQ =101, 100 BYTES '} |
226 |
_iﬁaLm
SEQ =201, 100 BYTES 231

DATA CONSIDERED READY TO SEND EVEN IF
A PRECEDING SEGMENT IS MISSING

234

DATA (SEQ =201, 100 BYTES)

FIGURE 2

|
|
|
|
|
|
|
:#236
[
|
|
|
|

U.S. Patent Oct. 4, 2016 Sheet 3 of 18

US 9,461,931 B1

300 A -
, 250 4%
TCP
STACK APPLICATION
MODULE
306 | SEND DATAWHEN 304 ;,302
Ay AVAILABLE
4308 I ,310 |
SEQ=1,100 BYTES | I
312+ /314 >g 316
| DATA (SEQ = 1, 100 BYTES) "
y‘322 /320 ‘/318
SEQ = 101, 100 BYTES I‘ SEND DATA WHEN AVAILABLE |
I
SEQ = 201, 100 BYTES 328 |
I DATA (SEQ = 201, 100 BYTES) T
PRIl /338 &3
- SEND DATA WHEN AVAILABLE I
342 L33 |
| DATA SENT EVEN OUT OF ORDER | |
344+ 7346 Lo
DATA (SEQ = 101, 100 BYTES)
rRL £352 &350
b SEND DATA WHEN AVAILABLE

FIGURE 3

U.S. Patent Oct. 4, 2016 Sheet 4 of 18 US 9,461,931 B1

200 A
/450 452
DEVICE 1
DEVICE 2 IMPLEMENTING
THE INVENTION
402 ~g £ > 404
| SIGNALING TO ESTABLISH TCP CONNECTION |
410 |
408+ / ve 12
SEQ=1, ACK =1, LENGTH 100 BYTES f/
| 46 |
LN / §414
| SEQ =1, ACK = 101 |
' 422 424 I
420 / 5’ |
SEQ =101, ACK=1, LENGTH=100BYTES ~ |
46 | 428 |
Y / > 430
| SEQ =201, ACK = 1, LENGTH = 100 BYTES |
| ACK WILL BE POPULATED AS IF THE
| " MISSING SEGMENT WAS SUCCESSFULLY
I (N RECEIVED, ACK NUMBER = 301
WITHOUT THE INVENTION ACK
: WOULD OTHERWISE BE SET TO 101
436

SEQ =1, ACK =301

434

‘9: L o3
|
|

FIGURE 4

US 9,461,931 B1

Sheet 5 of 18

Oct. 4, 2016

U.S. Patent

G J4N9I4
SHIGNNN LA
206
/ 008 004 009 00¢ 00y 00¢ 002 00l 0
| | | | | | | | _
< _ _ _ _ _ _ _ _ _
- | : N | e
/ S RS / 26€ | dyo €22 / 0
¥1S % 0LS 805 905
AWY3IHLS VLIVd AWY3IHLS V1vd AWY3IHLS V1vd
40 € 14vd 40 ¢ 14vd 40 | 149vd
008
|

U.S. Patent

US 9,461,931 B1

Oct. 4, 2016 Sheet 6 of 18
600 N
602 604
/ /
16 BIT LENGTH FIELD RTP PACKET
FIGURE 6
4
700
DATA STREAM
PART 1 OF GAP 1 PART 2 OF GAP 2
DATA %EREAM 704 DATA STREAM

> \f I”T\{ -------------- A — ~

710 712 714 716
703 | USESTANDARD |[START UsiNG E’;‘\(DH?EFT RESUME
METHODPRIOR ||~ sPECiAL | PACKE] USING
10 6P DETECTION]| METHOD || FOUNP | | sranparo
NRespoNse | T8 || “eTHOD
70 GAP

METHOD

DETECTION

FIGURE 7

US 9,461,931 B1

Sheet 7 of 18

Oct. 4, 2016

U.S. Patent

8 3dN9l4

X | x | x X | x [x| x| x| x| x| x| x| x| <98
a1 304N0S NOILYZINOYHONAS <718

Q1 304N0S NOILYZINOYHONAS <78

X | x | x X | x [x| x| x| x| x| x| x] x |[<08
(SLig 91 1SYId) dINVLS JWIL <808

X | x| X X | X (SLig 8 LSYId) Y3GWNN FONIND3IS <908
3dAL QVOTAYd X | x | x| x| x| x| x| o]+ | <8
alalo v]iel|lses | s|ols]| v el z]| | <z0s
F4VD LNOQ = SX 'AlddV OL N¥3L1Vd x___00e

U.S. Patent

Oct. 4, 2016

Sheet 8 of 18

US 9,461,931 B1

00 DATA STREAM
902
L e .
LE\I\/IEIITEFLE; D RTP PACKET n
! \ ! \ .
sTARToF 'O sTaRTOF 916 END OF RTP
LENGTH FIELD PATTERN PACKET n
, MATCH n/ |
| START OF RTP |
| PACKET n |
| | |
la— -\16 BITS . — |
: | |
908 906 |—————- XBYTES — ¢ ———— |
904 912 014
FIGURE 9
1000 %
DATA STREAM (1002)
PART1OF DATA GAP1 PART 2 OF DATA
STREAM (1004) (1006) STREAM (1008)
e YA >
| A 4
| | |
| |
START OF RTP PACKET
PACKET PACKET | consTRUCTION
CONSTRUCTION |
| CONTINUES FOR
IS SUSPENDED
' FOR THIS OTHER
| | PACKETS AND A
PARTICULAR |
| e PATTERN
| o) | mATCHIS
| oAGKET : OBSERVED

1014

FIGURE 10

US 9,461,931 B1

Sheet 9 of 18

Oct. 4, 2016

U.S. Patent

L1 J4N9I

SANYYY SANYHY

L 1IN0V ¢ 13M0Vd

(¢ IN3AT) (} INIAT)

%_: %_:
A
\
ANLzey, | |
G
x 0SH
¢ 13Novd
\Oov | /ov m
¢ IIMOVd ONISSTD0Hd 30439 | ontsai !
Z 1340Vd ¥04 LIYM OL ONOTMOH “9'3 Z Lo Ngory | SLaovd did S —— e
‘IWIL NO 43ISVE NOISIOAA LIVAVdIMS [¢+37V¥a | _ < Z0L1
d3dd0¥a ¥0 d3SS3I00Ud 39 T11LS 0L} WVYIYLS VLYA
dTNOHS ‘LINOVd ONIAIMYY LYV ‘| 13Movd |+ LIAOvd
HAHLIHM ‘TNIL TYAINYY NO a3svd ‘a3ainaa <
\ 9041
8G)1

US 9,461,931 B1

Sheet 10 of 18

Oct. 4, 2016

U.S. Patent

aNno4 JIONVY 40 LNO
¢l 34N9i4 952 | LON SYM LHVLS L3N0V dLY NV @134 HLONTT| w621
N ONVONI4 3STVH VY SYMHOLYA j&-{ Nianwa b
NY3LLVd Z INIAT INIWY3L3A ININY3L3A
‘¥ INAAT “€ INIAT
. A
ONH 3STVANALAY G 12
. _ PHLON3T 40
X 3LAG | ‘HOWV3S |
\ { 1MV1S 40
ONIHOLYI { NOLLYOOT
NY3LLYd 20 LAVLS; 57y N- L3NOvd
-J44ONOILYOOT} ~ 7% dLld 40 aN3
T A
HOLVW _ HOLVYIN _ .-.\\\ “1 LN3IAT
gzl — Nd3Llyd H0d || Ne3LLYd g
HOYVAS LYVL1S-3¥ anI4 i
'S IN3A3 1]z nana | | U- 1340Vd
_ _ dLd 40 QN3
| HOLYW | 40 NOILYDO1
_ Nd3Lllvd 8071
qaLoatza | |
|40 tavis 40 | _
NOILYOO1 |
0Lzl _ [

_

I ™

'y '
= 90z}~ T _Nwﬁ

WY3HLS ¥0C) WY3H1S
V1vQ 40 ¢ Lyvd d¥O yvIvad 40 | 1yvd
WY3N1S Viva
0021
®__

US 9,461,931 B1

1340Vd dLY NV 40 LHVLS 3HL ONI4 LON dId
¢l 34N9l4 SIv4 HOLYW N¥311Vd Z INIAT INIWYELIA 9 INIAT [,
SINWAU-13NOVd | 77
dINNO@3svg b oo, | JONVH SSANIT1EYNOSYIH .
HOLVIN N¥311vd NIHLIM 38 0L
6 IN3AT - aaNWY3L3a INTvA a3
— > pSel |HLONTT WLINTLO € IN3A| | (oniHoLvi
gael 9lel % A NY3LLVd
' / _[HOLVWNS3LLVd |4... |HLIMONNOS
_ SL¥VLS |7 zoer| 2 IN3AS *J LON Luv1S)
. || Nowsodwoo HOLV NY3L1Vd GEINTTETEL] i SOSEY
= | @ iiovdan P NO a3svd U 1IN0V \
S || UNaLOd 130Vd d LY NV 40 d1¥ 40 ON3
- | 7 IN3A3 L4V1S WIIN3LOd 11 INAZ
- wLEl / 0Lel]
o I _ U- 1IN0V "
o 9Gg) .
2 | _ dL m
2 _ _ 40 aN3 H
- - »! 80¢) i
I _ zhel | I i
| 14U 13N0Vd _ _ i
° | | dlyTVINALOd _ _
(=] !
3 vy V y
= S Nv3d1s vivd
: e e & BN SR
o 90¢g1 + 20¢l
WY3INLS vOEL VERTE
dvo s
V1Y 40 Z Lyvd | VIVQ 40 | Ldvd
8LE1
~Ned .\.
= 1+U 13¥OVd 40 ONI4 38TV4 40 14VLS e
et 1 Y314V LA INO SLUVLIS-3Y ONIHOLYW NYILLYd
~= \ 00¢ 1
< 2081 'L IN3AT %
=¥
e

U.S. Patent Oct. 4, 2016 Sheet 12 of 18 US 9,461,931 B1

140ﬂ

C START D 1oz
v

GET FIRST RTP PACKET ~ p— 1404

v

SET PATTERN MATCH VARIABLES ACCORDING TO THE RECEIVED | 1406
MESSAGE

ARE THERE TWO MORE BYTES
WITHOUT A GAP?

READ LENGTH

RE THERE ENOUGH BYTE
WITHOUT GAP UNTIL END OF
THE PACKET?

1409

S START OF THE PREVIOUS
PACKET FOUND WITH PATTERN
MATCH?

l 1418

PERFORM PATTERN MATCHING VERIFICATION BY
USING VALUES OF THE LAST PACKET WHICH IS
NOT FOUND THROUGH PATTERN MATCH

L1416 v v
CONSTRUCT PACKET IS PATTERN MATCH A N
SUCCESS?
Y 1417 7 1422
UPDATE PATTERN MATCH |}
VARIABLES GO BACK TO 1 BYTE AFTER THE
START OF THE PREVIOUS
PATTERN MATCH SUCCESS
1407
1423
FIGURE 14A
FIGURE 14B FIGURE 14A

FIGURE 14

U.S. Patent Oct. 4, 2016 Sheet 13 of 18 US 9,461,931 B1

1409
0

1424 v
GO AFTER THE GAP IN THE DATA STREAM

»

1423
&)

1426

S THERE A PATTER
MATCH BEFORE END OF
STREAM?

1436

WAIT FOR MORE BYTES TO BE READ TO
DATA STREAM

v 1438
FILL GAPS AND CONSTRUCT
PACKETS IF POSSIBLE

1428

Y IS LENGTH WITHIN N
ALLOWED RANGE? ¢ /1440
GO BACK TO 1 BYTE AFTER THE
1430 START OF PATTERN MATCH
. ARE THERE ENOUGH BYTE N
WITHOUT GAP UNTIL END OF 1423

THE PACKET?

1432
CONSTRUCT PACKET

¢ 1434 Y

UPDATE PATTERN MATCH
VARIABLES

1407

FIGURE 14B

U.S. Patent

Oct. 4,2016 Sheet 14 of 18 US 9,461,931 B1
Y 1500
ASSEMBLY OF MODULES, E.G., ASSEMBLY OF CIRCUITS
1502 1504 1506
Z Z pd
DATA EXTRACTION COMMUNICATIONS MODIFICATION
MODULE MODULE MODULE
1508 1510 1512
DETERMINATION Sgggﬁ#‘ECRE ACKNOWLEDGMENT
MODULE CONTROL MODULE GENERATION MODULE
1514 1516
Z Z
ACKNOWLEDGMENT 1518 PROCESSING MODULE 1520
COMMUNICATIONS
CONTROL MODULE PATTERN MATCHING PACKET LOCATION
MODULE DETERMINATION
MODULE
1522 1524
LENGTH FIELD END OF PACKET
1550 IDENTIFICATION DETERMINATION
—_——— MODULE MODULE
I 1cpiNTeRFACE | 1528
| SELECTION MODULE | 1526 p
- - LENGTH FI/ELD AND
PACKET CHECKING CONTROL MODULE
MODULE
™
PROCESSING START |
MODULE | 1552 1554 1556
—————— - [“watchng | | MATCHING | MATCHING _i
| BiTTEMPLATE | | INITIALIZATION I UPDATING
| SELecTion | | _MODULE | _ MODULE |
| MODULE |
s
["LENGTH FIELD VALUE
| REASONABLENESS |
| CHECKING MODULE |

FIGURE 15

U.S. Patent Oct. 4, 2016 Sheet 15 of 18 US 9,461,931 B1

1600 "\ START METHOD OF COMMUNICATING 1602
PACKETS USING TCP

—

RECEIVE SUFFICIENT INFORMATION FROM A BEGINNING PORTION OF A TCP PACKET
STREAM TO ALLOW IDENTIFICATION OF AN RTP PACKET COMMUNICATED IN THE TCP
PACKET STREAM, E.G., AFIRST RTP PACKET COMMUNICATED IN SAID TCP PACKET 1604
L swEM e

["RECEIVE AT LEAST 14 BYTES OF SAID TCP PACKET STREAM OR A TCP PACKET |
| SEQUENCE NUMBER CORRESPONDING TO SAID TCP PACKET STREAM

RECEIVE A TCP PACKET WHICH IS PART OF A TCP PACKET SEQUENCE |- 1608

v

EXTRACT DATA FROM SAID TCP PACKET

L 2
PROVIDE SAID EXTRACTED DATA AND A CORRESPONDING TCP PACKET SEQUENCE
NUMBER TO AN RTP APPLICATION IRRESPECTIVE OF WHETHER OR NOT A PRECEDING |~ 1612
TCP PACKET IN SAID PACKET SEQUENCE HAS BEEN RECEIVED

v
ADD SAID EXTRACTED DATA TO A SEQUENCE OF STORED PACKET DATA AT A LOCATION
IN SAID SEQUENCE OF STORED PACKET DATA, SAID LOCATION BEING A LOCATION 1614
DETERMINED BASED ON THE CORRESPONDING TCP PACKET SEQUENCE NUMBER
ASSOCIATED WITH THE EXTRACTED DATA

| 1610

1616

SAID CORRESPONDING
TCP PACKET SEQUENCE NUMBER

HIGHER THAN THE HIGHEST PREVIOUSLY
RECEIVED TCP PACKET SEQUENCE NUMBER
ORRESPONDING TO SAID TCP PACKE

SEQUENCE
?

INCREMENT A RECEIVED TCP SEQUENCE COUNTER TO SET A
HIGHEST RECEIVED SEQUENCE NUMBER OF saD TcP 1618
SEQUENCE COUNTER TO SAID CORRESPONDING TCP PACKET
SEQUENCE NUMBER
7 FIGURE 16A
SEND AN AGKNOWLEDGEMENT INDICATING SUCCESSFUL |, FIGURE 16B
RECEIPT OF A TCP PACKET WHEN SAID RECEIVED TCP PACKET |,
CAUSES INCREMENTING OF SAID RECEIVED TCP SEQUENCE FIGURE16C
SO FIGURE16D
1622
FIGURE 16

FIGURE 16A °

U.S. Patent

Oct. 4, 2016 Sheet 16 of 18

1622

RECEIVE A SECOND TCP PACKET WHICH IS
PART OF SAID TCP PACKET SEQUENCE

v

EXTRACT SECOND DATA FROM |- 1626
SAID SECOND TCP PACKET

— 1624

y

PROVIDE SAID EXTRACTED SECOND DATA AND A CORRESPONDING SECOND TCP
PACKET SEQUENCE NUMBER TO AN RTP APPLICATION IRRESPECTIVE OF WHETHER OR
NOT A PRECEDING TCP PACKET IN SAID PACKET SEQUENCE HAS BEEN RECEIVED

| 1628

A
ADD SAID EXTRACTED SECOND DATA TO A SEQUENCE OF STORED PACKET DATA AT A
LOCATION IN SAID SEQUENCE OF STORED PACKET DATA, SAID LOCATION BEING A
LOCATION DETERMINED BASED ON SAID SECOND TCP PACKET SEQUENCE NUMBER
ASSOCIATED WITH THE EXTRACTED SECOND DATA

[1630

AID CORRESPONDING SECOND
TCP PACKET SEQUENCE NUMBER
HIGHER THAN THE HIGHEST PREVIOUSLY
RECEIVED TCP PACKET SEQUENCE NUMBER
CORRESPONDING TO SAID TCP PACKET

SEQUENCE
?

1632

1638

1634 AlID CORRESPONDING SECOND

TCP PACKET SEQUENCE NUMBER

US 9,461,931 B1

INCREMENT THE RECEIVED TCP
SEQUENCE COUNTER TO SET THE
HIGHEST RECEIVED SEQUENCE
NUMBER OF SAID TCP SEQUENCE

SECOND TCP PACKET SEQUENCE
NUMBER

COUNTER TO SAID CORRESPONDING

1636
AN

A

LOWER THAN THE HIGHEST PREVIOUSLY

RECEIVED TCP PACKET SEQUENCE NUMBER

CORRESPONDING TO SAID TCP PACKET

SEQUENCE
?

y

SEND AN ACKNOWLEDGEMENT
INDICATING SUCCESSFUL RECEIPT
OF A TCP PACKET WHEN SAID
RECEIVED TCP PACKET CAUSES
INCREMENTING OF SAID RECEIVED
TCP SEQUENCE COUNTER

REFRAIN FROM CHANGING THE
RECEIVED TCP SEQUENCE COUNTER

v

REFRAIN FROM SENDING AN
ACKNOWLEDGEMENT TO THE SENDER
OF THE RECEIVED SECOND TCP PACKET

1642

FIGURE 16B

1643

C)«

U.S. Patent Oct. 4, 2016 Sheet 17 of 18 US 9,461,931 B1

RECEIVE ANOTHER TCP PACKET WHICHIS | 1644
PART OF SAID TCP PACKET SEQUENCE

+ / 1646
EXTRACT ADDITIONAL DATA FROM SAID ANOTHER TCP PACKET

v

PROVIDE SAID EXTRACTED ADDITIONAL DATA AND A CORRESPONDING

ANOTHER TCP PACKET SEQUENCE NUMBER TO AN RTP APPLICATION |- 1648

IRRESPECTIVE OF WHETHER OR NOT A PRECEDING TCP PACKET IN SAID
PACKET SEQUENCE HAS BEEN RECEIVED

L 2
ADD SAID EXTRACTED ADDITIONAL DATA TO A SEQUENCE OF STORED PACKET
DATA AT A LOCATION IN SAID SEQUENCE OF STORED PACKET DATA, SAID 1650
LOCATION BEING A LOCATION DETERMINED BASED ON SAID ANOTHERTCP |~
PACKET SEQUENCE NUMBER ASSOCIATED WITH THE EXTRACTED ADDITIONAL
DATA

1652

AID CORRESPONDING ANOTHER
TCP PACKET SEQUENCE NUMBER
HIGHER THAN THE HIGHEST PREVIOUSLY
RECEIVED TCP PACKET SEQUENCE NUMBER
CORRESPONDING TO SAID TCP PACKET

SEQUENCE 1658
5)
INCREMENT THE RECEIVED TCP A SAID CORRESPONDING
SEQUENCE COUNTER TO SET NOTHER TCP PACKET SEQUENC
THE HIGHEST RECEIVED NUMBER LOWER THAN THE HIGHEST
SEQUENCE NUMBER OF SAID , PREVIOUSLY RECEIVED TCP PACKET
TCP SEQUENCE COUNTER TO SEQUENCE NUMBER CORRESPONDING TQ
SAID CORRESPONDING SAID TCP PACKET
ANOTHER TCP PACKET 1660 SEQU7ENCE
SEQUENCE NUMBER REFRAIN FROM CHANGING THE '
1656 l RECEIVED TCP SEQUENCE
/ COUNTER
SEND AN ACKNOWLEDGEMENT $
INDICATING SUCCESSFUL EFRAN FROM SENDING AN
RECEIPT OF A TCP PACKET
ACKNOWLEDGEMENT TO THE |~ 1662
WHEN SAID RECEIVED TCP
SENDER OF THE RECEIVED
PACKET CAUSES INCREMENTING ANOTHER TGP PAGKET
OF SAID RECEIVED TCP
SEQUENCE COUNTER

FIGURE 16C

U.S. Patent Oct. 4, 2016 Sheet 18 of 18 US 9,461,931 B1

6 1634

DETERMINE THAT SAID SEQUENCE OF STORED PACKET DATA | 1666
INCLUDES SUFFICIENT DATA TO BEGIN PROCESSING

v 1670
o
PROCESS DATA IN SAID SEQUENCE OF STORED PACKET DATA TO IDENTIFY RTP PACKET BOUNDARIES

PERFORM A PATTERN MATCHING OPERATION TO IDENTIFY AT LEAST ONE RTP HEADER

FIELD WITHIN SAID DATA
o ___ Feouwmwsooms 57

rCHECK THE DATA FOR EXPECTED PATTERN MATCHING FOR AT LEAST TWO OF | 4
THE FOLLOWING RTP HEADER FIELDS: A VERSION FIELD, A PAYLOAD TYPE

| FIELD, A SEQUENCE NUMBER FIELD, A TIMESTAMP FIELD AND AN SSRC FIELD JI

Yy /

DETERMINE A LOCATION OF A RTP PACKET BOUNDARY BASED ON THE LOCATION OF THE IDENTIFIED
HEADER FIELD IN SAID DATA AND A KNOWN OFFSET FROM THE LOCATION OF SAID HEADER FIELD TO
THE START OF THE RTP PACKET WHICH INCLUDES THE AT LEAST ONE IDENTIFIED RTP HEADER FIELD

v

IDENTIFY A LENGTH FIELD IMMEDIATELY PRECEDING THE START OFANRTP [- 1676
PACKET HEADER INCLUDING THE AT LEAST ONE IDENTIFIED RTP HEADER FIELD

v

DETERMINE RTP PACKET LENGTH BASED ON INFORMATION / 1678
INCLUDED IN THE IDENTIFIED LENGTH FIELD

!

DETERMINE THE END OF THE RTP PACKET INCLUDING THE IDENTIFIED AT LEAST | - 1680
ONE RTP HEADER FIELD BASED ON THE DETERMINED RTP PACKET LENGTH

v

CHECK THAT ANOTHER LENGTH FIELD AND ANOTHER RTP PACKET |- 1682
IMMEDIATELY FOLLOW THE DETERMINED END OF THE RTP PACKET

1668

1674

[
>

b

1684

DOES
Y NOTHER LENGTH FIELD AND ANOTHE N
RTP PACKET IMMEDIATELY FOLLOW THE
DETERMINED END OF THE RTP
PACKET? v - 1686

USE PATTERN MATCHING TO FIND
ANOTHER RTP PACKET WHEN SAID CHECK
INDICATES THAT ANOTHER LENGTH FIELD

AND ANOTHER RTP PACKET DO NOT
IMMEDIATELY FOLLOW THE DETERMINED
END OF THE RTP PACKET

e
DETERMINE THE END OF THE ANOTHER RTP PACKET

' FIGURE 16D

| 1688

US 9,461,931 Bl

1
METHODS AND APPARATUS FOR
PREVENTING HEAD OF LINE BLOCKING
FOR RTP OVER TCP

RELATED APPLICATIONS

The present application claims the benefit of U.S. Provi-
sional Patent Application Ser. No. 61/947,244 filed Mar. 3,
2014 which is hereby expressly incorporated by reference in
its entirety.

BACKGROUND

Real-Time Transport Protocol (RTP) is often used for real
time communications including voice traffic. RTP is nor-
mally communicated using User Datagram Protocol (UDP)
which is a best effort type of protocol which does not involve
packet retransmission in the case of a lost or missing packet.

Transmission Control Protocol (TCP) in contrast to UDP
includes retransmission mechanisms where a lost or missing
packet may be requested and other TCP packets held until
the missing packet is received. This can lead to what is
sometimes referred to as Head Of Line Blocking (HOLB)
where a single missing TCP packet may delay the delivery
of subsequently received TCP packets.

HOLB can degrade real time communications where it
may result in voice or other information being delayed
potential past a point in time where it may be used. While a
small number of packets may end up being retransmitted in
TCP due to the loss of a packet, the effect of HOLB can
affect a much larger number of packets since multiple
packets may be delayed while a missing packet is retrans-
mitted. Thus, while TCP provides for ordered delivery of
packets, it suffers from head of line blocking (HOLB). If
segment x is not delivered, any subsequent segment is
normally not sent to the application until segment x is
received and delivered.

While the HOLB problem makes TCP less desirable than
other protocols for RTP packet communications, in some
situations such as at hotels or other public places, UDP and
other types of non-TCP packets are blocked for security
and/or other reasons by firewalls or NAT (Network Address
Translation) devices. For this reason, TCP is now being used
in some cases to communicate RTP packets.

RTP over TCP is sometimes used to traverse firewalls,
which do not allow UDP traffic or require presence of
Hypertext Transter Protocol (HTTP) proxy. This is com-
monly the case at hotels and other locations where UDP
traffic may be blocked.

RTP over TCP packets are carried based on RFC4571.
The RFC4571 specification provides a 16-bit length field at
the front of the RTP packet. The length field can be used to
identify packet boundaries in an RTP stream when it is
present.

When UDP is used to communicate RTP packets, RTP
packets are normally not split across UDP packet boundar-
ies. However, in the case of TCP which is deemed more
reliably than UDP since it has a packet retransmission
mechanism, RTP packets may be split across multiple TCP
packets. Thus, loss of a TCP packet may result in loss or
unavailability of the length field of an RTP packet making it
difficult to identify complete RTP packets in the case of one
or more missing TCP packets.

RTP is used to carry real time communication data. Delay
of such information is not desired due to its real time nature.
This is in conflict with HOLB. What makes HOLB espe-

10

20

30

40

45

50

55

2

cially bad for RTP applications is that it may prevent even
packets, which arrived in a timely manner, to be delivered to
the application.

In view of the above discussion it should be appreciated
that there is a need for methods and apparatus which allow
TCP to communicate RTP packets while avoiding the prob-
lems associated with head of line blocking which normally
occur when TCP is used for communications purposes.

SUMMARY

Methods and apparatus for processing and using TCP
packets to communicate RTP packets are described. After
receiving data obtained from the start of the TCP packet
stream sufficient to allow identification of an RTP packet,
e.g., the first RTP packet communicated in the TCP packet
stream, head of line blocking is avoided by operating a TCP
packet processing module to output RTP packet data to an
application irrespective of whether or not a preceding TCP
packet was received. Since output of packet data to an
application using RTP packets is not delayed during receipt
of an ongoing TCP stream until a missing TCP packet is
received, head of line blocking is avoided. RTP packet data
is subjected to pattern matching in order to identify and
process RTP packets in the case where RTP header infor-
mation such as packet length information corresponding to
a packet is missing due to the failure to receive a TCP packet
in a sequence of TCP packets used to communicate RTP
data. One or both devices operating as communications
peers in an RTP session may implement the methods and/or
apparatus described herein. The methods are particularly
well suited for use by devices operating behind firewalls
which block UDP or other types of packets other than TCP
packets. The methods and apparatus are also suited for
devices located behind a Network Address Translation
(NAT) device as well as by other devices, e.g., devices in the
core network of on the core network side of a network
border. In some cases the methods and apparatus are used by
a session border controller (SBC).

While head of line blocking is avoided for applications
involved in RTP communications, in some embodiments the
device implementing the method uses conventional process-
ing for handling TCP packet streams communicating data
other than RTP packets, e.g., Hyper Text Markup Language
(HTML) data or documents.

In at least some embodiments a device includes multiple
TCP interface modules. An application selects between a
TCP interface module which implements head of line block-
ing when the application does not use RTP packets and
selects the TCP interface module implemented in accor-
dance with the invention for processing to TCP packet
streams including RTP packets.

An exemplary method of communicating packets using
TCP, in accordance with some embodiments, includes:
receiving a TCP packet which is part of a TCP packet
sequence; extracting data from said TCP packet; and pro-
viding said extracted data and a corresponding TCP packet
sequence number to an RTP application irrespective of
whether or not a preceding TCP packet in said packet
sequence has been received. An exemplary apparatus for
communicating packets using TCP, in accordance with some
embodiments, includes: an interface including a receiver
configured to receive a TCP packet which is part of a TCP
packet sequence; a data extraction module configured to
extract data from said TCP packet; and a communications
module configured to provide said extracted data and a
corresponding TCP packet sequence number to an RTP

US 9,461,931 Bl

3

application irrespective of whether or not a preceding TCP
packet in said packet sequence has been received.

While various embodiments have been discussed in the
summary above, it should be appreciated that not necessarily
all embodiments include the same features and some of the
features described above are not necessary but can be
desirable in some embodiments. Numerous additional fea-
tures, embodiments, and benefits of various embodiments
are discussed in the detailed description which follows.

BRIEF DESCRIPTION OF THE FIGURES

FIG. 1 is a drawing of an exemplary system in which TCP
packets may be communicated, e.g., TCP packets used to
communicate RTP packets, in accordance with an exemplary
embodiment.

FIG. 2 includes illustrates a first example of TCP stack
behavior in accordance with an exemplary embodiment of
the present invention.

FIG. 3 illustrates a second example of TCP stack behavior
in accordance with an exemplary embodiment of the present
invention.

FIG. 4 illustrates an example including acknowledgment
signaling in accordance with an exemplary embodiment.

FIG. 5 illustrates an exemplary data stream with gaps.

FIG. 6 is a drawing illustrating a framing format for RTP
packets transmitted over TCP.

FIG. 7 is a drawing illustrating an exemplary data stream
including gaps, and corresponding operations which occur
over time.

FIG. 8 illustrates an exemplary pattern to apply for
matching, where X’s represent don’t care conditions.

FIG. 9 illustrates an exemplary data stream in which there
are enough available ordered bytes to determine the end of
RTP packet n.

FIG. 10 illustrates an exemplary data stream in which
there are not enough available ordered bytes to determine
the end of RTP packet.

FIG. 11 illustrates an exemplary data stream which con-
veys RTP packets which may be received out of order.

FIG. 12 illustrates and example in which a pattern match
detection is identified as a false detection of a start of an RTP
packet based on a failed reasonableness check of a value in
a potential length field.

FIG. 13 illustrates and example in which there is a pattern
match, and the value in the corresponding preceding poten-
tial field length field, is within the preconfigured range, but
the pattern match is actually a false indication of a RTP
packet start, and a second pattern match operation is used to
detect the false indication.

FIG. 14A is a first part of a flowchart of an exemplary
method of communicating packets in accordance with an
exemplary embodiment.

FIG. 14B is a second part of a flowchart of an exemplary
method of communicating packets in accordance with an
exemplary embodiment.

FIG. 15 is a drawing of an assembly of modules, which
may be included in a communications device implemented
in accordance with the present invention.

FIG. 16A is a first part of a flowchart of an exemplary
method of operating a communications device to commu-
nicate packets using TCP in accordance with an exemplary
embodiment.

FIG. 16B is a second part of a flowchart of an exemplary
method of operating a communications device to commu-
nicate packets using TCP in accordance with an exemplary
embodiment.

10

25

30

35

40

45

50

55

4

FIG. 16C is a third part of a flowchart of an exemplary
method of operating a communications device to commu-
nicate packets using TCP in accordance with an exemplary
embodiment.

FIG. 16D is a fourth part of a flowchart of an exemplary
method of operating a communications device to commu-
nicate packets using TCP in accordance with an exemplary
embodiment.

DETAILED DESCRIPTION

Methods and apparatus for using TCP packets to com-
municate RTP packets are described. The methods and
apparatus of the present invention avoid or reduce many of
the problems associated with TCP head of line blocking by
allowing content of a received TCP packet, corresponding to
RTP packet stream, to be passed to an application, after
successful receipt of an initial portion of a TCP packet
stream, e.g., sufficient information to identify an RTP
packet, e.g., the first RTP packet communicated by the TCP
stream, irrespective of whether or not a preceding TCP
packet was successfully received or is still waiting to be
received. Thus, once information is received to allow for the
reliable detection of RTP packets through header informa-
tion and/or pattern matching, RTP packet data obtained from
TCP packets is passed to an application without waiting for
receipt of TCP packets which may have been delayed or lost
during transmission.

FIG. 1 is a drawing of an exemplary system 1000 includ-
ing a communications device 1002, a network 1004, a node
1005, e.g., a session border controller (SBC), a firewall
1006, and a communications device 1008, in accordance
with an exemplary embodiment. Communication device
1002 is coupled to a communications network 1004. Com-
munications device 1002, e.g., a user equipment device, is a
party to RTP service. Node 1005, e.g., a session border
controller (SBC), couples the network 1004 to a firewall
1006. Communications device 1008, e.g., a user equipment
device, communicates through firewall 1006. Communica-
tions device 1008 includes an interface 1010, an application
module 1014, a processor 1016, e.g., a CPU, memory 1018,
an assembly of modules 1020, e.g., an assembly of circuits,
an input device 1022, e.g., keyboard, keypad, microphone,
switches, and/or touch screen, etc., an output device 1024,
e.g. display, speaker, etc. The various elements (1010, 1014,
1016, 1018, 1020, 1022, 1024) are coupled together via a
bus 1025 over which the various elements may interchange
data and information. Interface 1010 includes a TCP inter-
face 1012. TCP interface 1012 includes a receiver 1013 and
a transmitter 1015. Receiver 1013 is configured to receive a
TCP packet which is part of a TCP packet sequence.
Receiver 1013 is further configured to receive a second TCP
packet which is part of said TCP packet sequence. Trans-
mitter module 1015 is configured to transmit an acknowl-
edgment indicating successtul receipt of a TCP packet, said
transmission of the acknowledgement being under the con-
trol of an acknowledgment communication control module.

In some embodiments, interface 1010 includes one or
more additional TCP interfaces, e.g., additional TCP inter-
face 1017. In some such embodiments, an application selects
between additional TCP interface 1017 which implements
head of line blocking when the application does not use RTP
packets and selects the TCP interface module 1012 imple-
mented in accordance with the invention for processing to
TCP packet streams including RTP packets.

Memory 1018 includes assembly of modules 1026 and
data/information 1028. Data/information 1028 includes a

US 9,461,931 Bl

5

sequence of stored packet data. Data/information 1028
includes received TCP packets, data extracted from received
TCP packets and corresponding TCP packet sequence num-
bers. Data/information 1028 further includes information
identifying gaps. Data/information 1028 further includes
pattern matching information, information indicating an
identified start of an RTP packet, information indicating a
determined end of an RTP packet, information identifying a
length field, and a determined length field value, length field
value reasonableness limits, and recovered RTP packets.
Pattern matching information includes information identi-
fying which fields in an RTP header are used for pattern
matching, information identifying which bits in which iden-
tified fields are used for pattern matching and which bits are
don’t care condition bits. Pattern matching information
further includes a current pattern to be used for pattern
matching, which may be updated in response to a successful
find of a start of an RTP packet. Pattern matching informa-
tion further includes a pattern corresponding a last RTP
packet whose start was not determined based on pattern
matching.

An exemplary method in accordance with the present
invention can be implemented by an assembly of modules
included in a communication device, e.g., communications
device 1008. The modules in the assembly of modules used
to implement the present invention can, and in some
embodiments are, implemented fully in hardware within the
processor 1016, e.g., as individual circuits. The modules in
the assembly of modules can, and in some embodiments are,
implemented fully in hardware within the assembly of
modules 1020, e.g., as individual circuits corresponding to
the different modules. In other embodiments some of the
modules are implemented, e.g., as circuits, within the pro-
cessor 1016 with other modules being implemented, e.g., as
circuits within assembly of modules 1020, external to and
coupled to the processor 1016. As should be appreciated the
level of integration of modules on the processor and/or with
some modules being external to the processor may be one of
design choice.

Alternatively, rather than being implemented as circuits,
all or some of the modules in assembly of modules may be
implemented in software and stored in the memory 1018 of
the communications device 1008, with the modules control-
ling operation of communications device to implement the
functions corresponding to the modules when the modules
are executed by a processor, e.g., processor 1016. In some
such embodiments, the assembly of modules is included in
the memory 1018 as assembly of modules 1026. In still other
embodiments, various modules in assembly of modules are
implemented as a combination of hardware and software,
e.g., with another circuit external to the processor providing
input to the processor 1016 which then under software
control operates to perform a portion of a module’s function.
While shown in the communications device 1008 embodi-
ment as a single processor, e.g., computer, it should be
appreciated that the processor 1016 may be implemented as
one or more processors, e.g., computers.

When implemented in software the modules include code,
which when executed by the processor 1016, configure the
processor 1016 to implement the function corresponding to
the module. In embodiments where the assembly of modules
is stored in the memory 1018, the memory 1018 is a
computer program product comprising a computer readable
medium comprising code, e.g., individual code for each
module, for causing at least one computer, e.g., processor
1016, to implement the functions to which the modules
correspond.

10

15

20

25

30

35

40

45

50

55

60

65

6

Completely hardware based or completely software based
modules may be used. However, it should be appreciated
that any combination of software and hardware, e.g., circuit
implemented modules may be used to implement the func-
tions. As should be appreciated, the modules control and/or
configure the communications device 1008 or elements
therein such as the processor 1016, to perform functions of
corresponding steps of an exemplary method in accordance
with the present invention. Thus the assembly of modules
includes various modules that perform functions of the
corresponding steps of an exemplary method in accordance
with the present invention.

Various aspects described herein prevent or avoid at least
some of the negative effects of HOLB for traffic destined
toward an entity, e.g., end device which is party to an RTP
communications session, which handles TCP packets in the
manner described herein. The methods and apparatus
described herein can be used by a packet receiving device,
e.g., communications peer in an RTP communications ses-
sion, without requiring any special behavior by the commu-
nications peer in the RTP communications session. While
both devices in a communications session need not imple-
ment the HOLB avoidance mechanisms described herein,
they may do so with both devices then benefiting by avoid-
ing or reducing the problems of HOLB associated with used
of TCP packets for communication. Thus in FIG. 1, in some
embodiments, both communications device 1008 and com-
munications device 1002 implement methods in accordance
with the present invention.

Various embodiments include one or both of the following
two parts: (i) changes in TCP stack behavior, as compared to
a conventional TCP stack that implements HOLB, so that it
can deliver segments in an non-orderly way depending on
application preferences; and (ii) implementation of methods
to determine the boundaries between RTP packets in the case
where receipt of RTP packet length information may not
occur for at least some packets, e.g., packets which may be
partially received due to one or more missing TCP packets.

Exemplary TCP stack changes include a change in the
orderly delivery behavior of TCP stack, as compared to a
conventional TCP stack behavior. In some embodiments, in
accordance with a feature of the present invention, all
received segments are delivered to the application together
with sequence number.

FIG. 2 illustrates a first example of TCP stack behavior in
accordance with an exemplary embodiment of the present
invention. Drawing 200 of FIG. 2 illustrates exemplary steps
and exemplary signaling with regard to TCP stack module
250, e.g., an assembly of protocol processing elements, and
application 252, for a case in which a segment of data is
missing at the TCP stack module 250. In one exemplary
embodiment, TCP stack module 250 and application 252 are
included in communications device 1008 of system 1000 of
FIG. 1. In step 202, application 252 generates and sends
signal 204 to TCP stack module 250 requesting that the TCP
stack module 250 send data when available. In step 206 TCP
stack module 250 receives signal 204. Signal 208 commu-
nicating a first segment of data with sequence number=1 and
including 100 bytes of data is received by TCP stack module
250 in step 210. In step 212, TCP stack module 250
generates and transmits signal 214 communicating the
received first segment of data with sequence number=1 and
including 100 bytes of data. In step 216, application 252
receives signal 214 and recovers the communicated first
segment of data. In step 218, application 252 generates and
sends signal 220 to TCP stack module 250 requesting that
the TCP stack module 250 send data when available. In step

US 9,461,931 Bl

7

222 TCP stack module 250 receives signal 220. Signal 224
communicating a second segment of data with sequence
number=101 and including 100 bytes of data does not reach
TCP stack module 250, as indicated by X 226, e.g., the
second segment of data is lost in transmission to the TCP
stack module 250. Signal 228 communicating a third seg-
ment of data with sequence number=201 and including 100
bytes of data is received by TCP stack module 250 in step
230. In accordance with a feature of the current invention,
the data is considered ready to send even if a preceding
segment is missing, as indicated by block 231, e.g., the
second segment is missing, but the third segment is avail-
able. In step 232, TCP stack module 250 generates and
transmits signal 234 communicating the received third seg-
ment of data with sequence number=201 and including 100
bytes of data. In step 236, application 252 receives signal
234 and recovers the communicated third segment of data.

FIG. 3 illustrates a second example of TCP stack behavior
in accordance with an exemplary embodiment of the present
invention. Drawing 300 of FIG. 3 illustrates exemplary steps
and exemplary signaling with regard to TCP stack module
250 and application 252 for a case in which a segment of
data arrives out of order at the TCP stack module 252. In step
302, application 252 generates and sends signal 304 to TCP
stack module 250 requesting that the TCP stack module 250
send data when available. In step 306 TCP stack module 250
receives signal 304. Signal 308 communicating a first seg-
ment of data with sequence number=1 and including 100
bytes of data is received by TCP stack module 250 in step
310. In step 312, TCP stack module 250 generates and
transmits signal 314 communicating the received first seg-
ment of data with sequence number=1 and including 100
bytes of data. In step 316, application 252 receives signal
314 and recovers the communicated first segment of data. In
step 318, application 252 generates and sends signal 320 to
TCP stack module 250 requesting that the TCP stack module
250 send data when available. In step 322 TCP stack module
250 receives signal 320. Signal 324 communicating a sec-
ond segment of data with sequence number=101 and includ-
ing 100 bytes of data is transmitted toward the TCP stack
module 250. Signal 326 communicating a third segment of
data with sequence number=201 and including 100 bytes of
data is received by TCP stack module 250 in step 328. In
step 330, TCP stack module 250 generates and transmits
signal 332 communicating the received third segment of
data with sequence number=201 and including 100 bytes of
data. In step 334, application 252 receives signal 332 and
recovers the communicated third segment of data. In step
336, application 252 generates and sends signal 338 to TCP
stack module 250 requesting that the TCP stack module 250
send data when available. In step 340 TCP stack module 250
receives signal 338. Signal 324 communicating the second
segment of data with sequence number=101 and including
100 bytes of data is received by TCP stack module 250 in
step 342. In accordance with a feature of the present
invention, the data with be sent even out of order, as
indicated by block 343, e.g., segment 2 will be sent to
application 252 after segment 3. In step 344, TCP stack
module 250 generates and transmits signal 346 communi-
cating the received second segment of data with sequence
number=101 and including 100 bytes of data. In step 348,
application 252 receives signal 346 and recovers the com-
municated second segment of data. In step 350, application
252 generates and sends signal 352 to TCP stack module 250
requesting that the TCP stack module 250 send data when
available. In step 354 TCP stack module 250 receives signal
354.

10

15

20

25

30

35

40

45

50

55

60

65

8

If even some previous segments are missing, acknowl-
edgement indication is constructed according to the last
received segment if that segment is incrementing the
sequence number. This essentially prevents any retransmis-
sions on the sender, which would be triggered due to the
receipt of an acknowledgement with an older sequence
number.

FIG. 4 illustrates an example including acknowledgment
signaling in accordance with an exemplary embodiment. In
drawing 400 of FIG. 4 exemplary signaling is shown
between device 1 452, which is implementing the present
invention, and device 2 450. Device 1 452 is, e.g., commu-
nications device 1008 of FIG. 1. Device 1 452 includes a
TCP stack module, e.g., TCP stack module 250 of FIG. 2 and
FIG. 3.

In step 402 and step 404, device 2 450 and device 1 452
communicate, via signaling 406, to establish a TCP connec-
tion. In step 408 device 2 450 generates and sends a signal
410 including a sequence number=1, an acknowledgement
control bit set to 1, length information indicating 100 bytes
of data are being communicated, and 100 bytes of data. Thus
in step 410 device 2 450 sends, e.g., transmits, a first data
segment to device 1 452. In step 412 device 1 452 receives
signal 410 and recovers the information being communi-
cated. In step 414, device 1 452 generates and sends an
acknowledgment signal 416 including sequence number=1
and acknowledgment number=101. In step 418, device 2
418 receives the acknowledgment signal 416 and recovers
the communicated information. In step 420 device 2 450
generates and sends a signal 422 including a sequence
number=101, an acknowledgement control bit set to 1,
length information indicating 100 bytes of data are being
communicated, and 100 bytes of data. In this example,
signal 422 in not successfully received by device 1 452, as
indicated by X 424. Thus, the second data segment is not
successfully communicated from device 2 450 to device 1
452. In step 426 device 2 450 generates and sends a signal
428 including a sequence number=201, an acknowledge-
ment control bit set to 1, length information indicating 100
bytes of data are being communicated, and 100 bytes of data.
In step 430 device 1 452 receives signal 428 and recovers the
information communicated. Thus, the third data segment is
not successfully communicated from device 2 450 to device
1 452. In accordance with a feature of the present invention,
the acknowledgment will be populated as if the missing
segment, e.g., the second data segment, was received, e.g.,
the acknowledgment number will be set to 301, rather than
101, as indicated by block 431. In step 432, device 1 452
generates and sends an acknowledgment signal 434 includ-
ing sequence number=1 and acknowledgment number=301.
In step 436, device 2 450 receives the acknowledgment
signal 343.

There still could be retransmissions if sender does not
receive an ACK in time. TCP connection establishment/tear
down mechanisms are kept intact.

In various embodiments, in accordance with the present
invention, there are novel Application changes. The Appli-
cation reads as many bytes as available (or less depending on
implementation) from the socket corresponding to the TCP
connection.

The Application maintains an ordered list of segments
based on the sequence numbers/length information. This list
may have gaps as TCP stack sends segments as received
without ordering/waiting for gaps to be filled. It should be
noted that data segments do not necessarily align with RTP
message boundaries. A single segment may include: a single
whole packet, some portion of packet, portions of multiple

US 9,461,931 Bl

9

packets or some complete packets and portions of others.
The list is treated merely as a data stream with gaps.

Drawing 500 of FIG. 5 includes an exemplary data stream
with gaps 504. Horizontal line 502 represents byte numbers.
The exemplary data steam with gaps 504 includes a first data
steam portion 506 corresponding to bytes 0 to 233, followed
by a first gap 508, followed by a second data stream portion
510 corresponding to bytes 392 to 543, followed by a second
gap 512, and followed by a third data stream portion 514
corresponding to byte 725 and increasing in byte number.

Application starts processing the Data Stream. There is no
need to do anything special as long as a gap is not encoun-
tered except storing the Synchronization Source Identifier
(SSRC Identifier) of the first packet and updating last
received Sequence Number/Timestamp with each packet
and false pattern match related procedures as indicated in the
following sections.

FIG. 6 is a drawing 600 illustrating a framing format for
RTP packets transmitted over TCP. RTP packets transmitted
over TCP follow the following format according to
RFC4571. There is a 16 bit length field portion 602 followed
by an RTP or RTCP packet portion 604.

In accordance with a feature of the present invention,
packet boundaries are found based on the 16-bit Length
Field. Special logic, in accordance with the present inven-
tion, and described in the following sections, is activated,
e.g., kicks in, once a gap is encountered. Normal operation
resumes once ordered segments are observed. Optionally, a
timer can be, and in some embodiments is, started when a
gap is encountered and data stream processing suspends
until the gap is filled or the timer expires, whichever happens
first.

FIG. 7 is a drawing 700 illustrating an exemplary data
stream including gaps 702, and corresponding operations
which occur over time 703. Exemplary data stream includ-
ing gaps 701 includes part 1 of the data stream 702, which
is followed by gap 1 704, which is followed by part 2 of the
data stream 706, which is followed by part 2 of the data
stream 706, which is followed by gap 2 708. During part 1
702, the standard method is used, as indicated by block 710.
Once gap 1 704 is encountered, the special method is
activated and used, as indicated by block 712. An end of
packet is found using the special method, as indicated by
block 714. The standard method resumes once ordered
segments are observed, as indicated by block 716.

It is important that the application can identify the first
RTP packet successfully, as content of this packet can be,
and in various embodiment is, used to construct the pattern
for an immediate gap. In various embodiments, the first RTP
packet is identified using one or both of the two different
ways described below. In various embodiments, only one of
the two different approaches is implemented.

In the first approach, the TCP stack informs the applica-
tion about the initial sequence number when TCP connection
establishment is complete. Once the initial sequence number
is known, the application can determine whether the initial
data segment(s) is missing and if so can wait for it before
starting packet construction on the rest of the stream.

In the second approach, the TCP stack treats the initial
bytes specially and delivers them in order. It waits until the
first 14 bytes (Length Field+RTP header parts relevant for
pattern matching) are received before delivering any data to
the application.

The application determines the RTP message boundaries
by applying a fixed pattern on the received byte stream. The
following fields: version field, payload type field, sequence
number field, timestamp field, and SSRC field, with fixed

10

15

20

25

30

35

40

45

50

55

60

65

10

positions are used for this purpose, and any field/any com-
bination of fields can be optionally not used.

The version field is fixed as 2.

The payload type field conveys the payload type to use for
aparticular codec and is declared during session negotiation.
In various embodiments, this field can be used for pattern
matching only if the node, where this method is running,
advertises a single codec during session negotiation. The
other end can use any of the codecs if more than one codec
are advertised and hence this field can’t be used in a reliable
way for such scenarios. In such a scenario, the bits of this
field are “don’t care” with regard to the pattern matching.

The sequence number field conveys a sequence number
which identifies a particular message in a RTP stream and is
incremented by 1 for each subsequent message. In various
embodiments, the most significant 8 bits of the next
expected sequence number are used during pattern match-
ing. The reason for that is some packets may get lost and that
could cause a no-match if all of the bits of the sequence
number field are used for pattern matching. Not using the
least significant 8-bits compensates for 256 lost packets. If
desired, the number of bits can be adjusted to compensate
for more/less packets. Thus in some embodiments, a differ-
ent number of most significant bits of the sequence number
field are used for pattern matching, e.g., the 9 most signifi-
cant bit of the sequence number field are used for pattern
matching to compensate for 132 lost packets.

The sequence value to use would be first learned based on
the first RTP packet and will be updated based on the last
received packet.

For example, consider that the Sequence Number of the
last received RTP packet=54123=b(1101001101101011).
The value to use during next pattern matching, assuming that
the implementation uses the most significant 8 bits for
pattern matching=11010011XxXXXXXX.

The timestamp field conveys the Timestamp which pro-
vides information about the sampling instant of the first octet
of media data in RTP packet. In some embodiments, the
most significant 16 bits of the timestamp field are used for
pattern matching. The reason for that is some packets may
get lost and that could cause a no-match if all the bits of the
timestamp field are used. In some embodiments, the number
of bits of the timestamp field to be used for pattern matching
can be, and in some embodiments, is adjusted.

The Timestamp value to use would be first learned based
on the first RTP packet and will be updated based on the last
received packet. For example, consider that the

Timestamp of the last received RTP packet=45896784=b
(00000010101111000101010001010000). The value to use
during next pattern matching (assuming that most significant
16 bits of the timestamp field are used for pattern matching)
=0000001010111100XXXXXXXXXXXXXXXX.

The SSRC field conveys a 32 bit. SSRC value, which is
a 32-bit integer identifying participants in a session and is
chosen randomly by participants. The SSRC value is learned
based on the first RTP packet. IN some embodiments the
SSRC value is used for pattern matching. In some embodi-
ments, there are some scenarios, where the SSRC may
change during the session. In such a scenario, the SSRC field
should be used for pattern matching only if it is known a
priori or can be determined dynamically that SSRC change
during the session is not a possibility.

In one example, in which the SSRC field is used for
pattern matching, the SSRC of the first received RTP
packet=5874123=b(10110011010000111001011) The value
to use during pattern matching=10110011010000111001011

US 9,461,931 Bl

11

Drawing 800 of FIG. 8 illustrates an exemplary pattern to
apply for matching, where X’s represent don’t care condi-
tion. First row 802 identifies 16 ordered bit positions, which
correspond to the subsequent rows. Note that first row 802
is not part of the message matching pattern but indicates bit
numbering and/or positioning in the message to facilitate
understanding of the locations of particular portions of the
message pattern which is shown. Second row 804 includes
a matching pattern for the version field with version field
value=01, and a matching pattern for a payload type field
which is the payload type value. Third row 806 includes a
matching pattern using the first 8 bits of the sequence
number field value. Fourth row 808 includes a matching
pattern using the first 16 bits of the time stamp field value.
The fitth row 810, corresponding to the least significant bits
of the time stamp field, corresponds to don’t cares with
regard to the pattern matching. The sixth and seventh rows
(812, 814) convey the 32 bit synchronization source 1D
value which is used for pattern matching. The bits of the
eighth row 816 are don’t care with regard to the pattern
matching.

Once the pattern matches, the first matching byte is
considered the beginning of the next RTP packet. Data
before the match, prior to the length field, is considered as
belonging to the previous packet.

Once the pattern match is complete and the Length field
is identified, the Length field value will be used to determine
the end of the message if enough ordered bytes are available.

Drawing 900 of FIG. 9 illustrates an exemplary data
stream 902 in which there are enough available ordered
bytes to determine the end of RTP packet n. Point 904, in the
data stream 902, indicates the exemplary identified start of
a pattern match n, corresponding the start of RTP packet n.
By proceeding back 16 bits, as indicated by arrow 906, the
start of the length field 908, is identified. In this example, the
16 bit length field conveys a value=X, as indicated by box
910. Thus, proceed X bytes from the start of the pattern
match 904, as indicated by arrow 912, to find the end 914 of
RTP packet n 916 in the data stream 902.

If there are not enough ordered bytes to reach to the end
of the packet, packet construction suspends, and packet
construction resumes once more bytes are available at the
relevant gap. While the packet construction is suspended,
the method continues to run on the data stream after the gap
and tries to find the next pattern match. Similarly, a gap may
be encountered when going back on the Data Stream to find
the start of the Length Field/packet. This also causes a
suspension of packet construction. Optionally, the missing
bytes in an RTP payload can be, and in some embodiments
are, populated with a preconfigured value, e.g. “0”, for
certain codecs, e.g. G.711.

Drawing 1000 of FIG. 10 illustrates an exemplary data
stream 1002 in which there are not enough available ordered
bytes to determine the end of RTP packet. Exemplary data
stream 1002 includes a first portion 1004 of the data stream,
followed by a gap 1006, followed by a second portion 1008
of the data stream. The start of the exemplary RTP packet in
the data stream is identified, as location 1010. Based on the
length field value 1012, the end of the RTP packet is
expected at location 1014 in the data stream 1002. However,
because of gap 1006, packet construction of this particular
packet is suspended at point 1016. The method continues to
run on the data stream 1002 after the gap 1006. A pattern
match is observed at point 1018 and packet construction
continues for other packets.

In various embodiments, the ordering of segments is
performed by an application based on RTP sequence num-

20

25

40

45

50

65

12

bers. The application can, and in some embodiments does,
determine whether or not a late arriving packet should still
be processed or not. The application can also, and in some
embodiments does, decide how long to hold on received
packets, if lost packets are detected, before starting to
process the received packets which followed the lost packet
or packets. For example, consider that Packet 1, Packet 3,
Packet 4 are received, and packet 2 is a lost packet. Packet
1 is processed. The application decides how long to wait for
Packet 2 before starting to process Packet 3 and Packet 4.
Optionally, in some embodiment, all constructed packets are
processed regardless of the timing of construction. This
approach of processing all constructed packets regardless of
the timing of construction is well suited for systems, where
the packet processing is limited to relaying the packets to
another entity.

Drawing 1100 of FIG. 11 illustrates an exemplary data
stream 1102. Data stream 1102 conveys RTP packets 1104,
which may be received out of order. Drawing 1150 illus-
trates an exemplary time line 1152 including event 1 1154,
at which packet 3 1110 is received, and event 2 1156, at
which packet 1 1106 is received. It is decided, based on the
arrival time 1156, whether packet 1 1106, a late arriving
packet should still be processed or should be dropped, as
indicated by box 1158. Packet 2 1108 is a missing packet. A
skip/wait decision is made based on time, as indicated by
box 1160, e.g., a decision is made in regard to how long to
wait for packet 2 1108 to arrive before deciding to process
packet 3 1110, which follows packet 2 in the RTP packet
ordering.

All the used fields are in RTP header and are not encrypted
when SRTP is used, hence the mechanism works also for
SRTP streams. Thus in various embodiments, the exemplary
method including pattern matching can be, and in some
embodiments, is used for SRTP packets in addition to RTP
packets.

At least theoretically, there is a chance that there is a false
indication of a packet detection based on a pattern match. To
minimize the impact of such cases, in some embodiments,
the Length Field is compared against an upper and lower
limit, e.g., reasonableness checks are performed. In some
embodiments, these upper/lower limits are configurable. In
some embodiments, the upper limit is set to a value slightly
more than the maximum expected RTP packet length, and
the lower limit is set to a value slightly less than the
minimum expected RTP packet length. If the Length Field
value is outside of the range, a pattern match should be
considered as invalid with regard to actually detecting the
start of an RTP packet, and pattern matching operation
re-starts after the starting byte of the current match. Option-
ally, in some embodiments, checking the value of the Length
Field against a preconfigured range is performed for all
packets including the ones constructed with the standard
method. Again optionally, in some embodiments, pattern
match is applied to all packets as well as a sanity check.

FIG. 12 illustrates and example in which a pattern match
detection is identified as a false detection of a start of an RTP
packet based on a failed reasonableness check of a value in
a potential length field. Data stream 1200 includes a first
portion 1202, followed by a gap 1204, followed by a second
portion 1206. Location 1202 in data stream 1200 indicates
the location of the end of RTP packet -n. Event 1 1250
corresponds to a determination of the end of RTP packet —n.
Because the gap 1204 occurs, searching is subsequently
performed looking for a pattern match after the gap. Event
2 1252 occurs, in which a pattern patch is detected, and the
location of the pattern match starts at point 1210 in the data

US 9,461,931 Bl

13

stream 1200. If the pattern match corresponds to detection of
the start of an RTP packet, the length field should precede
the start of the pattern match. The expected location of the
start of the expected length field is location 1212 in the data
stream 1200. In Event 3 1254, the value in the expected
length field is checked and found to be outside the reason-
able range. Therefore, in Event 4 1256, it is determined that
the pattern match of event 2 1252 is determined to be a false
find and an RTP packet was not found. Next, in event 5 1258,
anew pattern match search procedure starts at location 1214,
which is 1 byte after the start of false find 1210 in the data
stream 1200.

To deal with cases, where there is a pattern match,
corresponding to a false detection of the start of an RTP
packet, and the Field Length is within the preconfigured
range, in some embodiments, the following procedure is
followed. If the start of a packet is found with pattern
matching, the next packet should be verified with pattern
matching of the respective bytes with the pattern built
according to the pattern values of the latest packet, whose
start was not found with pattern matching.

FIG. 13 illustrates an example in which there is a pattern
match, and the value in the corresponding preceding poten-
tial field length field, is within the preconfigured range, but
the pattern match is actually a false indication of a RTP
packet start, and a second pattern match operation is used to
detect the false indication. Data stream 1300 includes a first
portion 1302, followed by a gap 1304, followed by a second
portion 1306. Point 1308 corresponds to the end of packet
-n in the data stream. Event 1 1350 is the determination of
the end of RTP packet -n. Note that RTP packet —n’s start
was not found with pattern matching. In response to gap
1304, pattern matching is performed to search for the start
of'an RTP packet. Following the gap 1304, at location 1310
in the data stream 1300, a pattern match is detected and
designated as event 2 1352. Location 1310 is the potential
start of an RTP packet based on pattern matching. In event
3, 1354, the check of the value, in the potential length field
preceding the pattern match, determines that the length
value is within the expected reasonable range. Potential
packet n+1 1312, is identified in the data stream 1300 based
on the value in the potential length field.

Location 1314 corresponds to the end of potential RTP
packet n+1 1312 in data stream 1300. If event 2 actually
corresponded to the detection of the start of RTP packet n+1,
then it is expected that a length field for packet n+2 will start
at location 1314 in data stream 1300, and will be followed
by RTP packet n+2. Event 4 1356 indicates that the potential
RTP packet n+2 composition starts. Event 5 1358 indicates
that the pattern match for potential RTP packet n+2 fails,
e.g., at location 1316 in the data stream 1300. In this
example, information used in the pattern matching operation
is based on RTP packet values from RTP packet -n, which
was the last packet whose start was not found using packet
matching. In event 6 1360, it is determined that the event 2
pattern match did not find the start of an RTP packet. Thus
potential RTP packet n+1 1312 is not an RTP packet. In
event 7 1362, pattern matching re-starts at position 1318,
which is one byte after the false find of packet n+1.

FIG. 14, comprising the combination of FIG. 14A and
FIG. 14B, is a flowchart of an exemplary method of com-
municating packets in accordance with an exemplary
embodiment. The method of flowchart 1400 may be imple-
mented by a communications device, e.g., communications
device 1008 of FIG. 1. The method of FIG. 14 relates to
various structures, aspects, features, and/or steps described
in FIGS. 6-13. Operation starts in step 1402, and proceeds

20

25

30

40

45

55

14

to step 1404. In step 1404, a first RTP packet is obtained
from the data stream being processed. The RTP packet is a
message which includes various fields in its header. Opera-
tion proceeds from step 1404 to step 1406. In step 1406
pattern match variables are set according to the received
message, e.g., the pattern match variable are set based on
information included in the received message including,
e.g., information based on the payload type field value, the
sequence number, the timestamp field value, and the SSRC
field value. Operation proceeds from step 1406 to step 1408.

In step 1408, it is determined if there are two more bytes
without a gap in the data stream. It is expected that a length
field corresponding to the next RTP packet will correspond
to the next two bytes in the data stream being processed. If
it is determined that there are two more bytes in the data
stream without a gap, then operation proceeds from step
1408 to step 1410; otherwise, operation proceeds from step
1408, via connecting node Y 1409 to step 1424,

Returning to step 1408, in step 1408 the length is read,
e.g., the length field value for the next RTP packet is read
from the two more bytes which correspond to the 16 bit
length field. Operation proceeds from step 1410 to step
1412. In step 1412, a check is performed as to whether or not
there are enough bytes without a gap in the data stream until
the end of the packet, based on the length field value
obtained in step 1410. If it is determined that there are
enough bytes without a gap until the end of the packet, then
operation proceeds from step 1412 to step 1414; otherwise,
operation proceeds from step 1412, via connecting node Y
1409, to step 1424.

Returning to step 1414, in step 1414 it is determined
whether or not the start of the previous packet was found
with pattern match. If the start of the previous packet was
found with pattern match, then operation proceeds from step
1414 to step 1418; otherwise, operation proceeds from step
1414 to step 1416.

In step 1416 a packet is constructed, e.g., using the bytes
identified by the length field value of step 1410. Operation
proceeds from step 1416 to step 1417. In step 1417 the
pattern match variables are updated based on information in
the header field of the constructed packet of step 1416.
Operation proceeds from step 1417 via connecting node X
1407 to step 1408 for additional processing of the data
stream.

Returning to step 1424, in step 1424, the processing
position in the data stream moves to after the gap in the data
stream, e.g., to a point corresponding to the end of the gap+2
bytes. The search for a pattern match starts to try to find the
start of an RTP packet. The search window will slide, e.g.,
move forward, if a pattern match is not found to search the
available data in the data stream. Operation proceeds from
step 1424 to step 1426. In step 1426 a check is performed to
determine if there is a pattern match before the end of the
data stream. If a pattern match is not found before reaching
the end of data stream, then operation proceeds from step
1426 to step 1436; otherwise, operation proceeds from step
1426 to step 1428 in response to a pattern match.

If operation proceeds to step 1436, the available data in
the data stream to be processed has run out without finding
a pattern match. Returning to step 1436, in step 1436 a wait
is performed for more bytes to be read to the data stream.
Operation proceeds from step 1436 to step 1438 in which
gaps are filled and packets constructed if possible. Operation
proceeds from step 1438, via connecting node Y 1409 to step
1424.

Returning to step 1428, in step 1428 a check is performed
to determine if the length is within the allowed range. The

US 9,461,931 Bl

15

allowed range is, e.g., a length field value reasonableness
range, e.g., a predetermined reasonableness range. In vari-
ous embodiments, different streams of RTP packets may
correspond to different length field value reasonableness
ranges. The location of the pattern match is used to identify
a potential length field, e.g., a 16 bit length field which
immediately precedes an RTP packet in the data stream. The
length value being tested in step 1438 for reasonableness is
the value obtained from the potential length field corre-
sponding to the pattern match of step 1426. If the length is
within the allowed range, e.g., the reasonableness test
passes, then operation proceeds from step 1428 to step 1430;
otherwise, operation proceeds from step 1428 to step 1440.

Returning to step 1430, in step 1430, a check is made as
to whether or not there are enough bytes without a gap until
the end of the packet. Thus step 1430 checks as to whether
or not there are at least as many bytes without a gap as the
number of bytes specified in length value of the potential
length field. If it is determined that there are enough bytes
without a gap, then operation proceeds from step 1430 to
step 1432; otherwise, operation proceeds from step 1430 to
step 1424, via connecting node Y 1409.

Returning to step 1440, in step 1440 a processing position
in the data stream goes to 1 byte after the start of the pattern
match. Operation has proceeded to step 1440 because the
value in the length field has failed its reasonableness check
in step 1428. Thus the prior match is deemed a false find, and
the prior match did not find the start of an RTP packet.
Operation proceeds from step 1440, via connecting node Z
1423, to step 1426, to search for the next pattern match in the
data stream.

Returning to step 1432, in step 1432, a packet is con-
structed, e.g., the enough referred to in step 1430 are used to
construct an RTP packet. Operation proceeds from step 1432
to step 1434 in which the pattern match variables are
updated using information from the header field of newly
constructed RTP packet from step 1432. Operation proceeds
from step 1434, via connecting node X 1407 to step 1408.

Returning to step 1418, in step 1418, a pattern matching
verification is performed by using values of the last packet
which was not found through pattern match. Operation
proceeds from step 1418 to step 1420. In step 1420, if the
pattern match test of step 1418 is a success, then operation
proceeds from step 1420 to step 1416. However, if the
pattern match test of step 1418 is not a success, then
operation proceeds from step 1420 to step 1422. In step
1422, the position in the data stream being processed is
moved back to 1 byte after the start of the previous pattern
match success, which was actually a false RTP packet start
detection. Operation proceeds from step 1422 via connect-
ing node Z 1423, to step 1426, in which the search continues
for another pattern match using the advanced start point of
step 1422.

Use of SCTP is an alternative as it is message oriented and
provides unordered delivery and suffers less of HOLB due
to possibility of using multiple streams.

SCTP is not allowed through some/most restrictive fire-
walls, only TCP is. The methods and apparatus described
herein allow TCP to be used for communications without
being subject to the Head of Line Blocking due to the
passing of received packets without waiting for a missing
packet to be received from the sender, e.g., in response to a
TCP indication sent to the sender that a TCP packet was not
successfully received.

The methods and apparatus described in the previous
section may and sometimes are implemented in an entity,
e.g., customer premise device such as a personal computer

20

35

40

45

50

16

or TCP capable telephone or other device consuming, e.g.,
receiving and using, RTP over TCP. The methods and
apparatus are well suited for deployment scenario where
endpoints, e.g., user devices, are located behind firewall/
NAT that block UDP packets and, e.g., allow only TCP
based traffic. The described mechanism is also applicable for
devices behind NAT and also core network elements inter-
acting with such devices, e.g. SBC.

FIG. 15 is a drawing of an assembly of modules 1500,
which may be included in a communications device imple-
mented in accordance with the present invention, e.g.,
communications device 1008 of FIG. 1. Assembly of mod-
ules 1500 may implement steps of a method, e.g., steps of
the method of flowchart 1600 of FIG. 16 and/or steps of the
method of flowchart 1400 of FIG. 14. In some embodiments,
assembly of modules 1500 is an assembly of circuits, which
may be coupled together. In one exemplary embodiment,
assembly of modules 1500 is assembly of modules 1020 of
communications device 1008 of system 1000 of FIG. 1. In
some embodiments, the assembly of module 1500 is an
assembly of software modules. In one exemplary embodi-
ment, assembly of modules 1500 is assembly of modules
1026 of memory 1018 of communications device 1008 of
system 1000 of FIG. 1.

FIG. 15 illustrates an assembly of modules 1500 which
can, and in some embodiments is, used in the communica-
tions device 1008 illustrated in FIG. 1. The modules in the
assembly of modules 1500 can, and in some embodiments
are, implemented fully in hardware within the processor
1016, e.g., as individual circuits. The modules in the assem-
bly of modules 1500 can, and in some embodiments are,
implemented fully in hardware within the assembly of
modules 1020, e.g., as individual circuits corresponding to
the different modules. In other embodiments some of the
modules are implemented, e.g., as circuits, within the pro-
cessor 1016 with other modules being implemented, e.g., as
circuits within assembly of modules 1020, external to and
coupled to the processor. As should be appreciated the level
of integration of modules on the processor and/or with some
modules being external to the processor may be one of
design choice.

Alternatively, rather than being implemented as circuits,
all or some of the modules in assembly of modules 1500
may be implemented in software and stored in the memory
1018 of the communications device 1008, with the modules
controlling operation of communications device 1008 to
implement the functions corresponding to the modules when
the modules are executed by a processor, e.g., processor
1016. In some such embodiments, the assembly of modules
1500 is included in the memory 1018 as assembly of
modules 1026. In still other embodiments, various modules
in assembly of modules 1500 are implemented as a combi-
nation of hardware and software, e.g., with another circuit
external to the processor providing input to the processor
1016 which then under software control operates to perform
a portion of a module’s function. While shown in the FIG.
1 embodiment as a single processor, e.g., computer, it should
be appreciated that the processor 1016 may be implemented
as one or more processors, e.g., computers.

When implemented in software the modules include code,
which when executed by the processor 1016, configure the
processor 1016 to implement the function corresponding to
the module. In embodiments where the assembly of modules
1500 is stored in the memory 1018, the memory 1018 is a
computer program product comprising a computer readable
medium comprising code, e.g., individual code for each

US 9,461,931 Bl

17

module, for causing at least one computer, e.g., processor
1016, to implement the functions to which the modules
correspond.

Completely hardware based or completely software based
modules may be used. However, it should be appreciated
that any combination of software and hardware, e.g., circuit
implemented modules may be used to implement the func-
tions. As should be appreciated, the modules illustrated in
FIG. 15 control and/or configure the communications device
1008 or clements therein such as the processor 1016, to
perform functions of the corresponding steps illustrated in
the method flowchart 1600 of FIG. 16 and/or flowchart 1400
of FIG. 14. Thus the assembly of modules 1500 includes
various modules that perform functions of the corresponding
steps of the method shown in FIG. 16 and/or FIG. 14.

Assembly of modules 1500 includes a data extraction
module 1502, a communications module 1504, a modifica-
tion module 1506, a determination module 1508, a sequence
counter control module 1510, an acknowledgement genera-
tion module 1512, an acknowledgment communications
control module 1514, and a processing module 1516. Pro-
cessing module 1516 includes a pattern matching module
1518, a packet location determination module 1520, a length
field identification module 1522, and end of packet deter-
mination module 1524, a length field and packet checking
module 1526, and a control module 1528.

Data extraction module 1502 is configured to extract data
from a received TCP packet. Communications module 1504
is configured to provide said extracted data and a corre-
sponding TCP packet sequence number to an RTP applica-
tion irrespective of whether or not a preceding TCP packet
in said packet sequence had been received. Modification
module 1506 is configured to add said extracted data to said
sequence of stored packet data at a location in said sequence
of'stored packet data determined based on the corresponding
TCP packet sequence number associated with the extracted
data. Determination module 1508 is configured to determine
if said corresponding TCP packet sequence number is higher
than the highest previously received TCP packet sequence
number corresponding to said TCP packet sequence.
Sequence counter control module 1510 is configured to
increment a received TCP sequence counter to set a highest
received sequence number of said TCP sequence counter to
said corresponding TCP packet sequence number, when said
determination module 1508 determines that that the received
TCP sequence number is higher than the highest previously
received sequence number corresponding to said TCP packet
sequence. Acknowledgment generation module 1512 is con-
figured to generate an acknowledgment indicating success-
ful receipt of a TCP packet when said received TCP packet
causes incrementing of said received TCP sequence counter.
Acknowledgment communications control module 1514 is
configured to send an acknowledgment indicating successful
receipt of a TCP packet when said received packet causes
incrementing of said received TCP sequence counter.

Data extraction module 1502 is further configured to
extract second data from a second TCP packet. Communi-
cations module 1504 is further configured to provide said
extracted second data and a corresponding second TCP
packet sequence number to the RTP application irrespective
of whether or not a preceding TCP packet in said packet
sequence has been received. Modification module 1506 is
further configured to add said extracted second data to the
sequence of stored packet data at a location in said sequence
of stored packet data determined based on a second TCP
packet sequence number associated with the extracted sec-
ond data. Determination module 1508 is further configured

10

15

20

25

30

35

40

45

50

55

60

65

18

to determine if said corresponding second TCP packet
sequence number is higher than the highest previously
received TCP packet sequence number corresponding to said
TCP packet sequence. Sequence counter control module
1510 is further configured to increment the received TCP
sequence counter to set a highest received sequence number
of said TCP sequence counter to said corresponding second
TCP packet sequence number when said determination
module 1508 determines that the corresponding second TCP
packet sequence number is higher than the highest previ-
ously received sequence number corresponding to said TCP
packet sequence. Sequence counter control module 1510 is
further configured to refrain from changing the received
TCP sequence counter to set a highest received sequence
number of said TCP sequence counter when said determi-
nation module 1508 determines that the corresponding sec-
ond TCP packet sequence number is lower than the highest
previously received sequence number corresponding to said
TCP packet sequence.

Acknowledgement communications control module 1514
is configured to refrain from sending an acknowledgment to
the sender of the received TCP packet, when the determi-
nation module 1508 determines that the corresponding sec-
ond TCP sequence number is lower than the highest previ-
ously received sequence number corresponding to said TCP
packet sequence.

Processing module 1516 is configured to process data in
said sequence of packet data to identify RTP packet bound-
aries. Pattern matching module 1518 is configured to per-
form a pattern matching operation to identify at least one
RTP header field within said data. In some embodiments,
pattern matching module 1518 is configured to check the
data for expected pattern matching for at least two of the
following RTP header fields: a version field, a payload type
field, a sequence number field, a timestamp field, and an
SSRC field. Packet location determination module 1520 is
configured to determine a location of a RTP packet boundary
based on the location of the identified header field in said
data and a known offset from the location of the header field
to the start of an RTP packet which includes the at least one
identified RTP header field. Length field identification mod-
ule 1522 is configured to identity a length field immediately
preceding the start of an RTP packet header including the at
least one identified RTP header field. End of packet deter-
mination module 1524 is configured to determine the end of
the RTP packet including the identified at least one RTP
header field based on the determined packet length. Length
field and packet checking module 1526 is configured to
check that another length field and another RTP packet
immediately follow the determined end of the RTP packet.
Control module 1528 is configured to use the pattern match-
ing, e.g., use pattern module 1518, to find another RTP
packet when said check, performed by module 1526, indi-
cates that another field and another RTP packet do not
immediately follow the determined end of the RTP packet.

In some embodiments, assembly of modules 1500 further
includes one or more of: a TCP interface selection module
1550 and a processing start module 1551. TCP interface
selection module 1550 is configured to select between
alternative TCP interfaces based on whether or not the TCP
stream to be processed includes RTP packets. For example,
TCP interface selection module 1550 selects a second TCP
interface, e.g., TCP interface 1017, which implements head
of line blocking when the TCP packet stream does not
communicate RTP packets, and selects a first TCP interface,
e.g., TCP interface 1012, implemented in accordance with
novel features of the invention, when the TCP packet stream

US 9,461,931 Bl

19

includes RTP packets. Processing start module 1551 is
configured to determine that the sequence of stored packet
data includes sufficient data to begin processing, e.g., suf-
ficient data to start identifying RTP packet boundaries and
recover RTP packets.

In some embodiments, processing module 1516 includes
one or more or all of: a matching pattern field/bit template
selection module 1552, a matching pattern initialization
module 1554, a matching pattern updating module 1556, and
a length field value reasonableness checking module 1558.

In some embodiments, different RTP header field match-
ing templates are used corresponding to different RTP data
streams, different types of data being communicated, differ-
ent communication rates, different latency requirements,
different user service plans, different bandwidth allocations,
different channel conditions, and/or different end user agree-
ments. For example, in one template the first 8 bits of the
sequence number are used for pattern matching and the other
bits of the sequence number are don’t care bits, and in
another template the first 7 bits of the sequence number are
used for pattern matching and other bits of the sequence
number are don’t care bits. In some different templates
different sets of pattern matching fields are used. Matching
patter field/bit template selection module 1552 is configured
to select a particular template for pattern matching from a
plurality of alternative templates, e.g., stored alternative
templates for a particular RTP packet stream being commu-
nicated. Matching pattern initialization module 1554 is
configured to populate the bits of the pattern matching
template, which are not don’t care bits, with initial values.
Matching pattern updating module 1556 is configured to
update the bits of the pattern matching template, which are
not don’t care bits with updated values, e.g., based on a
detected RTP based from a successtul pattern match follow-
ing a gap. Length field value reasonableness checking mod-
ule 1558 is configured to check the value in a potential
length field preceding a possible detected start of an RTP
packet based on pattern matching to determine whether or
not the value is within a range of expected RTP packet length
values. In some embodiments, different limits are used for
the reasonableness check corresponding to different RTP
packet streams.

In some embodiments, one or more or all of the modules
(1518, 1520, 1522, 1524, 1526, 1528, 1552, 1554, 1556,
1558), which are shown to be included in processing module
1516, may be independent modules, e.g., located outside of
module 1516.

FIG. 16, comprising the combination of FIG. 16A, FIG.
16B, FIG. 16C, and FIG. 16D is a flowchart 1600 of an
exemplary method of operating a communications device to
communicate packets using TCP in accordance with an
exemplary embodiment. The communications device imple-
menting the method of flowchart 1600 is, e.g., an end user
device such as, e.g., a smart phone, a personal computer, a
TCP capable telephone, etc., a core network element such as,
e.g., a session border controller (SBC), or any other com-
munications device including a TCP stack module. In one
example, the communications device implementing the
method of flowchart 1600 is communications device 1008,
e.g., a user equipment device, of system 1000 of FIG. 1.

Operation of the exemplary method starts in step 1602, in
which the communications device is powered on and ini-
tialized. Operation proceeds from step 1602 to step 1604. In
addition, operation proceeds from step 1602, via connecting
node B 1634, to step 1666. Returning to step 1604, in step
1604 the communications device receives sufficient infor-
mation from a beginning portion of a TCP packet stream to

5

10

15

20

25

30

35

40

45

50

55

60

65

20

allow identification of an RTP packet communicated in the
TCP packet stream, e.g., a first RTP packet communicated in
said TCP packet stream. In some embodiments, step 1604
includes step 1606, in which the communications device
receives at least 14 bytes of said TCP packet stream or a TCP
packet sequence number corresponding to said TCP packet
stream. Operation proceeds from step 1604 to step 1608.

In step 1608 the communications device receives a TCP
packet which is part of a TCP packet sequence. In some
embodiments, step 1608 is included as part of step 1604.
Operation proceeds from step 1608 to step 1610. In step
1610 the communications device extracts data from said
TCP packet. Operation proceeds from step 1610 to step
1612.

In step 1612, the communications devices provides said
extracted data and a corresponding TCP packet sequence
number to an RTP application irrespective of whether or not
a preceding packet in said packet sequence has been
received. Operation proceeds from step 1612 to step 1614.

In step 1614, the communications device adds said
extracted data to a sequence of stored packet data at a
location in said sequence of stored packet data, said location
being a location determined based on the corresponding
TCP packet sequence number associated with the extracted
data. Operation proceeds from step 1614 to step 1616.

In step 1616, the communications device determines if
said corresponding TCP packet sequence number is higher
than the highest previously received TCP packet sequence
number. If the communications determines that the corre-
sponding TCP packet sequence number is higher than the
highest previously received TCP packet sequence number
corresponding to the TCP packet sequence, then operation
proceeds from step 1616 to step 1618; otherwise, operation
proceeds from step 1616, via connecting node A 1622 to step
1624.

Returning to step 1618, in step 1618 the communications
device increments a received TCP sequence counter to set a
highest received sequence number of said TCP sequence
counter to said corresponding TCP packet sequence number.
Operation proceeds from step 1618 to step 1620, in which
the communications device sends an acknowledgment indi-
cating successful receipt to a TCP packet when said received
TCP packet causes incrementing of said received TCP
sequence counter. Operation proceeds from step 1620, via
connecting node A 1622, to step 1624.

In step 1624 the communications device receives a second
TCP packet which is part of said TCP packet sequence.
Operation proceeds from step 1624 to step 1626. In step
1626 the communications device extracts second data from
said TCP packet. Operation proceeds from step 1626 to step
1628. In step 1628 the communications device provides said
extracted second data and a corresponding second TCP
packet sequence number to an RTP application irrespective
of whether or not a preceding TCP packet in said packet
sequence has been received. Operation proceeds from step
1628 to step 1630.

In step 1630 the communications device adds said
extracted second data to a sequence of stored packet data,
said location being a location determined based on said
second TCP packet sequence number associated with the
extracted second data. Operation proceeds from step 1630 to
step 1632. In step 1632 the communications device deter-
mines if said second TCP packet sequence number is higher
than the highest previously received TCP packet sequence
number corresponding to said TCP packet sequence. If it is
determined that the second TCP packet sequence number is
higher than the highest previously received TCP packet

US 9,461,931 Bl

21

sequence number corresponding to said TCP packet
sequence, then operation proceeds from step 1632 to step
1634; otherwise, operation proceeds from step 1632 to step
1638.

Returning to step 1634, in step 1634 the communications
device increments the received TCP sequence counter to set
the highest received sequence number of said TCP sequence
counter to said corresponding second TCP packet sequence
number. Operation proceeds from step 1634 to step 1636, in
which the communications device sends an acknowledg-
ment indicating successful receipt of a TCP packet when
said received second TCP packet causes incrementing of
said received TCP sequence counter. Operation proceeds
from step 1636, via connecting node C 1643, to step 1644.

Returning to step 1638, in step 1638 the communication
device determines if the corresponding second TCP packet
sequence number is lower than the highest previously
received TCP packet sequence number corresponding to the
TCP packet sequence. If it is determined that the second
TCP packet sequence number is lower than the highest
previously received TCP packet sequence number corre-
sponding to the TCP packet sequence, then operation pro-
ceeds from step 1638 to step 1640; otherwise, operation
proceeds from step 1638, via connecting node C 1643 to step
1644. Returning to step 1640, in step 1640, the communi-
cations device refrains from changing the received TCP
sequence counter. Operation proceeds from step 1640 to step
1642. In step 1642, the communications device refrains from
sending an acknowledgment to the sender of the received
second TCP packet. Operation proceeds from step 1642, via
connecting node C 1643 to step 1644.

In step 1644 the communications device receives another
TCP packet which is part of said TCP packet sequence.
Operation proceeds from step 1644 to step 1646. In step
1646 the communications device extracts additional data
from said another TCP packet. Operation proceeds from step
1646 to step 1648. In step 1648 the communications device
provides said extracted additional data and a corresponding
another TCP packet sequence number to an RTP application
irrespective of whether or not a preceding TCP packet in said
packet sequence has been received. Operation proceeds
from step 1648 to step 1650.

In step 1650 the communications device adds said
extracted additional data to a sequence of stored packet data
at a location in said sequence of stored packet data, said
location determined based on said another TCP packet
sequence number associated with the extracted additional
data. Operation proceeds from step 1650 to step 1652. In
step 1652 the communications device determines if said
another TCP packet sequence number is higher than the
highest previously received TCP packet sequence number
corresponding to said TCP packet sequence. If it is deter-
mined that the another TCP packet sequence number is
higher than the highest previously received TCP packet
sequence number corresponding to said TCP packet
sequence, then operation proceeds from step 1652 to step
1654; otherwise, operation proceeds from step 1652 to step
1658.

Returning to step 1654, in step 1654 the communications
device increments the received TCP sequence counter to set
the highest received sequence number of said TCP sequence
counter to said corresponding another TCP packet sequence
number. Operation proceeds from step 1654 to step 1656, in
which the communications device sends an acknowledg-
ment indicating successful receipt of a TCP packet when
said received another TCP packet causes incrementing of
said received TCP sequence counter. This will prevent

10

15

20

25

30

35

40

45

50

55

60

65

22

retransmissions since received packets with lower sequence
numbers will be ignored for retransmission message gen-
eration purposes once the sent higher packet sequence
number acknowledgement is received. Operation proceeds
from step 1656, via connecting node D 1664, to step 1644.

Returning to step 1658, in step 1658 the communication
device determines if the corresponding another TCP packet
sequence number is lower than the highest previously
received TCP packet sequence number corresponding to the
TCP packet sequence. If it is determined that the corre-
sponding TCP packet sequence number is lower than the
highest previously received TCP packet sequence number
corresponding to the TCP packet sequence, then operation
proceeds from step 1658 to step 1660; otherwise, operation
proceeds from step 1658, via connecting node D 1664 to
step 1644. Returning to step 1660, in step 1660, the com-
munications device refrains from changing the received TCP
sequence counter. Operation proceeds from step 1660 to step
1662. In step 1662, the communications device refrains from
sending an acknowledgment to the sender of the received
another TCP packet. Operation proceeds from step 1662, via
connecting node D 1664 to step 1644.

Returning to step 1666, in step 1666, the communications
device determines that said sequence of stored packet data
includes sufficient data to begin processing. Operation pro-
ceeds from step 1666 to step 1668. In step 1668 the
communications device processes data in said sequence of
packet data to identify RTP packet boundaries. Step 1668
includes step 1670 and step 1672. In step 1670 the commu-
nications device performs a packet matching operation to
identify at least one RTP header field in said data. In some
embodiments, step 1670 includes step 1672 in which the
communications device checks the data for expected pattern
matching for at least two of the following RTP header fields:
aversion field, a payload type field, a sequence number field,
a timestamp field, and an SSRC field. Operation proceeds
from step 1670 to step 1674, in which the communications
device determines a location of a RTP packet boundary
based on the location of the identified header field in said
data and a known offset from the location of said header field
to the start of the RTP packet which includes the at least one
identified header field. Operation proceeds from step 1668 to
step 1676.

In step 1676 the communications device identifies a
length field immediately preceding the start of an RTP
packet header including the at least one identified RTP
header field. Operation proceeds from step 1676 to step
1678.

In step 1678 the communications device determines RTP
packet length based on information included in the identified
length field. Operation proceeds from step 1678 to step
1680. In step 1680 the communications device determines
the end of the RTP packet including the identified at least
one RTP header field based on the determined RTP packet
length. Operation proceeds from step 1680 to step 1682. In
step 1682 the communications device checks that another
length field and another RTP packet immediately follow the
determined end of the RTP packet. Operation proceeds from
step 1682 to step 1684. In step 1684 the communications
device controls operation as a function of the check as to
whether or not another length field and another RTP packet
immediately follow the determined packet. If the check
indicates that another length field and another RTP packet
does not immediately follow the determined end of the RTP
packet, then operation proceeds from step 1684 to step 1686;
otherwise, operation proceeds from step 1684 to step 1688.
In step 1686 the communications device uses pattern match-

US 9,461,931 Bl

23

ing to find another RTP packet when said check indicates
that another length field and another RTP packet do not
immediately follow the determined end of the RTP packet.
Operation proceeds from step 1686 to step 1688, in which
the communications device determines the end of the
another RTP packet. Operation proceeds from step 1688 to
step 1684 to continue processing the sequence of stored
packet data.

In various embodiments, a reasonableness check is also
performed on a value obtained from a field identified as a
length field, based on pattern matching. Thus in some
embodiments, a length field value reasonableness check is
used to screen out a false indication of an RTP packet
boundary identification based on a pattern match. Thus, in
some embodiments, a pattern match may be identified as a
false find based on a failed reasonableness check of length
information.

In various embodiments, the data, e.g., test pattern to be
applied, used for subsequent pattern matching is updated,
when an RTP packet is found, e.g., when an RTP packet is
found using pattern matching.

The methods and apparatus described herein can be used
in wide variety of devices, which support RTP over TCP
based streams. The methods and apparatus can be used to
allow a party to support RTP over TCP based streams while
avoiding or reducing the risk that the normal TCP packet
holding mechanism which may result in head of line block-
ing will interfere with or degrade real time communications.
The end devices implementing the methods described herein
could be a mobile terminal, a softclient, a browser, a SBC,
etc., each of which includes a processor and an interface for
receiving/transmitting packets in a addition to a memory for
storing received packets and/or received packet data as well
as data and packets to be transmitted.

The methods and apparatus described herein can be used
to support communication services, which use RTP and
where the client is located behind a restrictive Firewall/NAT
that block non-TCP packets but passes TCP packets. How-
ever, the methods and apparatus are not limited to applica-
tions where Firewalls and/or NATs perform such blocking
and they can be used wherever RTP packets are communi-
cated using TCP.

The techniques of various embodiments may be imple-
mented using software, hardware and/or a combination of
software and hardware. Various embodiments are directed to
apparatus, e.g., communications device such as, e.g., user
equipment devices, SBCs, etc. Various embodiments are
also directed to methods, e.g., a communications method,
etc. Various embodiments are also directed to machine, e.g.,
computer, readable medium, e.g., ROM, RAM, CDs, hard
discs, etc., which include machine readable instructions for
controlling a machine to implement one or more steps of a
method. The computer readable medium is, e.g., non-tran-
sitory computer readable medium.

It is understood that the specific order or hierarchy of
steps in the processes disclosed is an example of exemplary
approaches. Based upon design preferences, it is understood
that the specific order or hierarchy of steps in the processes
may be rearranged while remaining within the scope of the
present disclosure. The accompanying method claims pres-
ent elements of the various steps in a sample order, and are
not meant to be limited to the specific order or hierarchy
presented.

In various embodiments nodes described herein are
implemented using one or more modules to perform the
steps corresponding to one or more methods, for example,
signal generation, signal transmission, signal reception, sig-

20

25

30

35

40

45

55

24

nal processing, storing information, retrieving information,
making a determination, processing data, receiving TCP
packets, extracting data from a received TCP packet, pro-
viding extracted data and a TCP packet sequence number to
an RTP application, deciding whether or not to increment a
received TCP sequence counter, generating an acknowledg-
ment, sending an acknowledgment, processing data in a
sequence of stored packet data to identify RTP packet
boundaries, performing a pattern matching operation, and/or
other steps. Thus, in some embodiments various features are
implemented using modules. Such modules may be imple-
mented using software, hardware or a combination of soft-
ware and hardware. Many of the above described methods
or method steps can be implemented using machine execut-
able instructions, such as software, included in a machine
readable medium such as a memory device, e.g., RAM,
floppy disk, etc. to control a machine, e.g., general purpose
computer with or without additional hardware, to implement
all or portions of the above described methods, e.g., in one
or more nodes. Accordingly, among other things, various
embodiments are directed to a machine-readable medium,
e.g., a non-transitory computer readable medium, including
machine executable instructions for causing a machine, e.g.,
processor and associated hardware, to perform one or more
of the steps of the above-described method(s). Some
embodiments are directed to an apparatus, e.g., a commu-
nications device such as a user equipment device, SBC, etc.,
including a processor configured to implement one, multiple
or all of the steps of one or more methods of the invention.

In some embodiments, the processor or processors, e.g.,
CPUs, of one or more devices, e.g., of the communications
device, e.g., a user equipment device or an SBC, are
configured to perform the steps of the methods described as
being performed by the apparatus. The configuration of the
processor may be achieved by using one or more modules,
e.g., software modules, to control processor configuration
and/or by including hardware in the processor, e.g., hard-
ware modules, to perform the recited steps and/or control
processor configuration. Accordingly, some but not all
embodiments are directed to a device, e.g., such as commu-
nications device, e.g., a user equipment device or a SBC,
with a processor which includes a module corresponding to
each of the steps of the various described methods per-
formed by the device in which the processor is included. In
some but not all embodiments an apparatus, e.g., a commu-
nications device, e.g., a user equipment device or SBC,
includes a module corresponding to each of the steps of the
various described methods performed by the device in which
the processor is included. The modules may be implemented
using software and/or hardware.

Some embodiments are directed to a computer program
product comprising a computer-readable medium, e.g., a
non-transitory computer-readable medium, comprising code
for causing a computer, or multiple computers, to implement
various functions, steps, acts and/or operations, e.g. one or
more steps described above. Depending on the embodiment,
the computer program product can, and sometimes does,
include different code for each step to be performed. Thus,
the computer program product may, and sometimes does,
include code for each individual step of a method, e.g., a
communications method. The code may be in the form of
machine, e.g., computer, executable instructions stored on a
computer-readable medium, e.g., a non-transitory computer-
readable medium, such as a RAM (Random Access
Memory), ROM (Read Only Memory) or other type of
storage device. In addition to being directed to a computer
program product, some embodiments are directed to a

US 9,461,931 Bl

25

processor configured to implement one or more of the
various functions, steps, acts and/or operations of one or
more methods described above. Accordingly, some embodi-
ments are directed to a processor, e.g., CPU, configured to
implement some or all of the steps of the methods described
herein.

Numerous additional variations on the methods and appa-
ratus of the various embodiments described above will be
apparent to those skilled in the art in view of the above
description. Such variations are to be considered within the
scope. Numerous additional embodiments, within the scope
of the present invention, will be apparent to those of
ordinary skill in the art in view of the above description and
the claims which follow. Such variations are to be consid-
ered within the scope of the invention.

What is claimed is:

1. A method of communicating packets using TCP, the
method comprising:

receiving a first TCP packet which is part of'a TCP packet

sequence;
extracting first data from said first TCP packet;
providing said extracted first data and a corresponding
first TCP packet sequence number to an RTP applica-
tion irrespective of whether or not a preceding TCP
packet in said packet sequence has been received;

determining if said corresponding first TCP packet
sequence number is higher than the highest previously
received TCP packet sequence number corresponding
to said TCP packet sequence;

incrementing a received TCP sequence counter to set a

highest received sequence number of said TCP
sequence counter to said corresponding first TCP
packet sequence number when it is determined that the
received first TCP sequence number is higher than the
highest previously received sequence number corre-
sponding to said TCP packet sequence;

receiving a second TCP packet which is part of said TCP

packet sequence;
extracting second data from said second TCP packet;
providing said extracted second data and a corresponding
second TCP packet sequence number to the RTP appli-
cation irrespective of whether or not a preceding TCP
packet in said packet sequence has been received;

determining if said corresponding second TCP packet
sequence number is higher than the highest previously
received TCP packet sequence number corresponding
to said TCP packet sequence;
incrementing the received TCP sequence counter to set a
highest received sequence number of said TCP
sequence counter to said corresponding second TCP
packet sequence number when it is determined that the
corresponding second TCP sequence number is higher
than the highest previously received sequence number
corresponding to said TCP packet sequence; and

refraining from changing the received TCP sequence
counter and refraining from sending an acknowledge-
ment to the sender of the received second TCP packet
when it is determined that the corresponding second
TCP sequence number is lower than the highest previ-
ously received sequence number corresponding to said
TCP packet sequence.

2. The method of claim 1, further comprising:

adding said extracted first data to a sequence of stored
packet data at a location in said sequence of stored
packet data, said location being a location determined
based on the corresponding first TCP packet sequence
number associated with the first extracted data.

10

15

20

25

30

35

40

45

50

55

60

65

26

3. The method of claim 1, further comprising:

sending an acknowledgement indicating successful
receipt of a TCP packet when said received first TCP
packet causes incrementing of said received TCP
sequence counter.

4. The method of claim 1, further comprising:

adding said extracted second data to the sequence of

stored packet data at a location in said sequence of
stored packet data, said location being a location deter-
mined based on a second TCP packet number associ-
ated with the extracted second data.

5. The method of claim 4, further comprising:

processing data in said sequence of packet data to identify

RTP packet boundaries.
6. The method of claim 5, wherein said step of processing
data in said sequence of packet data to identify RTP packet
boundaries includes:
performing a pattern matching operation to identify at
least one RTP header field within said data; and

determining a location of a RTP packet boundary based on
the location of the identified header field in said data
and a known offset from the location of said header
field to the start of an RTP packet which includes the at
least one identified RTP header field.

7. The method of claim 6, wherein performing a pattern
matching operation includes checking the data for expected
patterns matching at least two of the following RTP header
fields: a version field, a payload type field, a sequence
number field, a timestamp field, and an SSRC field.

8. An apparatus for communicating packets using TCP,
comprising:

memory; and

a processor configured to control said apparatus to:

receive a first TCP packet which is part of a TCP packet
sequence;

extract first data from said first TCP packet; and

provide said extracted first data and a corresponding
first TCP packet sequence number to an RTP appli-
cation irrespective of whether or not a preceding
TCP packet in said packet sequence has been
received;

determine if said corresponding first TCP packet
sequence number is higher than the highest previ-
ously received TCP packet sequence number corre-
sponding to said TCP packet sequence;

increment a received TCP sequence counter to set a
highest received sequence number of said TCP
sequence counter to said corresponding first TCP
packet sequence number when it is determined that
the received first TCP sequence number is higher
than the highest previously received sequence num-
ber corresponding to said TCP packet sequence;

receive a second TCP packet which is part of said TCP
packet sequence;

extract second data from said second TCP packet;

provide said extracted second data and a corresponding
second TCP packet sequence number to the RTP
application irrespective of whether or not a preced-
ing TCP packet in said packet sequence has been
received;

determine if said corresponding second TCP packet
sequence number is higher than the highest previ-
ously received TCP packet sequence number corre-
sponding to said TCP packet sequence;

increment the received TCP sequence counter to set a
highest received sequence number of said TCP
sequence counter to said corresponding second TCP

US 9,461,931 Bl

27

packet sequence number when it is determined that
the corresponding second TCP sequence number is
higher than the highest previously received sequence
number corresponding to said TCP packet sequence;
and

refrain from changing the received TCP sequence coun-
ter and refrain from sending an acknowledgement to
the sender of the received second TCP packet when
it is determined that the corresponding second TCP
sequence number is lower than the highest previ-
ously received sequence number corresponding to
said TCP packet sequence.

9. An apparatus for communicating packets using TCP,

comprising:

an interface including a receiver configured to receive a
first TCP packet which is part of a TCP packet
sequence;

a data extraction module configured to extract first data
from said first TCP packet; and

a communications module configured to provide said
extracted first data and a corresponding first TCP
packet sequence number to an RTP application irre-
spective of whether or not a preceding TCP packet in
said packet sequence has been received;

a determination module configured to determine if said
corresponding first TCP packet sequence number is
higher than the highest previously received TCP packet
sequence number corresponding to said TCP packet
sequence;

a sequence counter control module configured to incre-
ment a received TCP sequence counter to set a highest
received sequence number of said TCP sequence coun-
ter to said corresponding first TCP packet sequence
number when said determination module determines
that the received first TCP sequence number is higher
than the highest previously received sequence number
corresponding to said TCP packet sequence;

wherein said receiver is further configured to receive a
second TCP packet which is part of said TCP packet
sequence;

wherein said data extraction module is further configured
to extract second data from said second TCP packet;

wherein said communications module is further config-
ured to provide said extracted second data and a
corresponding second TCP packet sequence number to
the RTP application irrespective of whether or not a
preceding TCP packet in said packet sequence has been
received;

wherein said determination module is further configured
to determine if said corresponding second TCP packet
sequence number is higher than the highest previously
received TCP packet sequence number corresponding
to said TCP packet sequence; and

wherein said sequence counter control module is further
configured to:
increment the received TCP sequence counter to set a

highest received sequence number of said TCP

10

15

20

25

30

35

40

45

50

28

sequence counter to said corresponding second TCP
packet sequence number when it is determined that
the corresponding second TCP sequence number is
higher than the highest previously received sequence
number corresponding to said TCP packet sequence
and
refrain from changing the received TCP sequence coun-
ter when it is determined that the corresponding
second TCP sequence number is lower than the
highest previously received sequence number corre-
sponding to said TCP packet sequence; and
wherein said acknowledgement communications control
module is configured to refrain from sending an
acknowledgement to the sender of the received second
TCP packet, when it is determined that the correspond-
ing second TCP sequence number is lower than the
highest previously received sequence number corre-
sponding to said TCP packet sequence.

10. The apparatus of claim 9, further comprising:

a memory including a sequence of stored packet data;

a modification module configured to add said extracted
first data to said sequence of stored packet data at a
location in said sequence of stored packet data deter-
mined based on the corresponding first TCP packet
sequence number associated with the extracted first
data.

11. The apparatus of claim 9, further comprising:

an acknowledgement communications control module
configured to send an acknowledgement indicating
successful receipt of a TCP packet when said received
first TCP packet causes incrementing of said received
TCP sequence counter.

12. The apparatus of claim 10,

wherein said modification module is further configured to
add said extracted second data to the sequence of stored
packet data at a location in said sequence of stored
packet data determined based on the second TCP
packet sequence number associated with the extracted
second data.

13. The apparatus of claim 12, further comprising:

a processing module configured to process data in said
sequence of packet data to identify RTP packet bound-
aries.

14. The apparatus of claim 13, wherein said processing
module is further configured, as part of being configured to
process data in said sequence of packet data to identify RTP
packet boundaries, to perform the following:

perform a pattern matching operation to identify at least
one RTP header field within said data; and

determine a location of a RTP packet boundary based on
the location of the identified header field in said data
and a known offset from the location of said header
field to the start of an RTP packet which includes the at
least one identified RTP header field.

#* #* #* #* #*

